Utah State University DigitalCommons@USU

Elusive Documents

U.S. Government Documents (Utah Regional Depository)

10-1965

Central Utah Project Ultimate Phase: Inventory of Available Data

Bureau of Reclamation

Follow this and additional works at: http://digitalcommons.usu.edu/elusive_docs
Part of the Environmental Indicators and Impact Assessment Commons, and the Water Resource
Management Commons

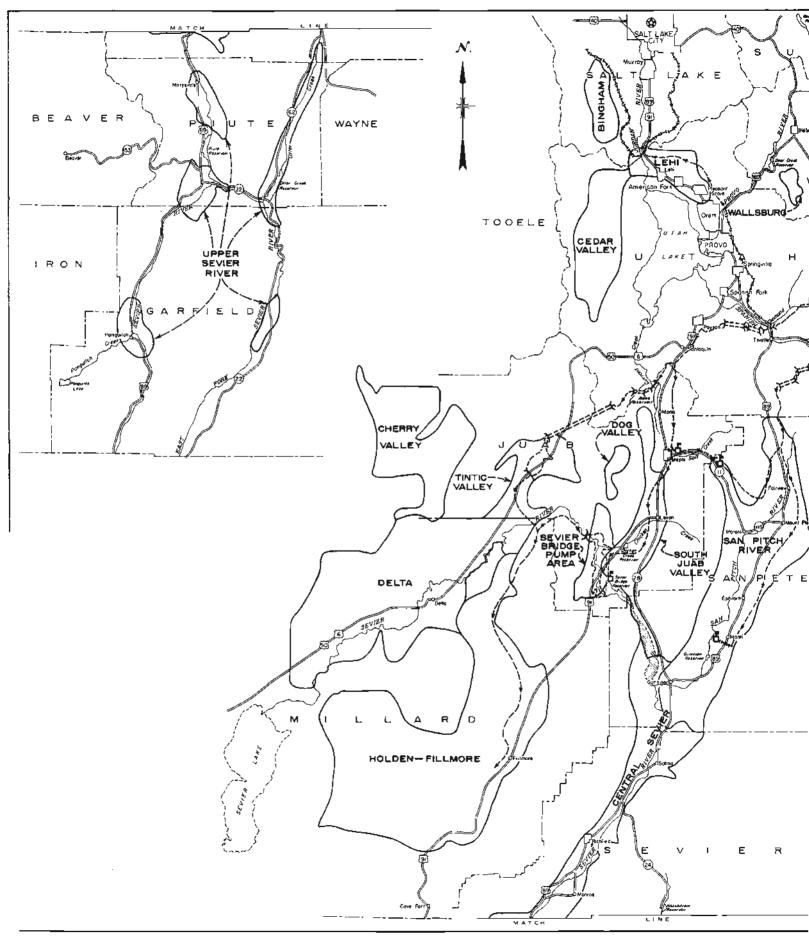
Recommended Citation

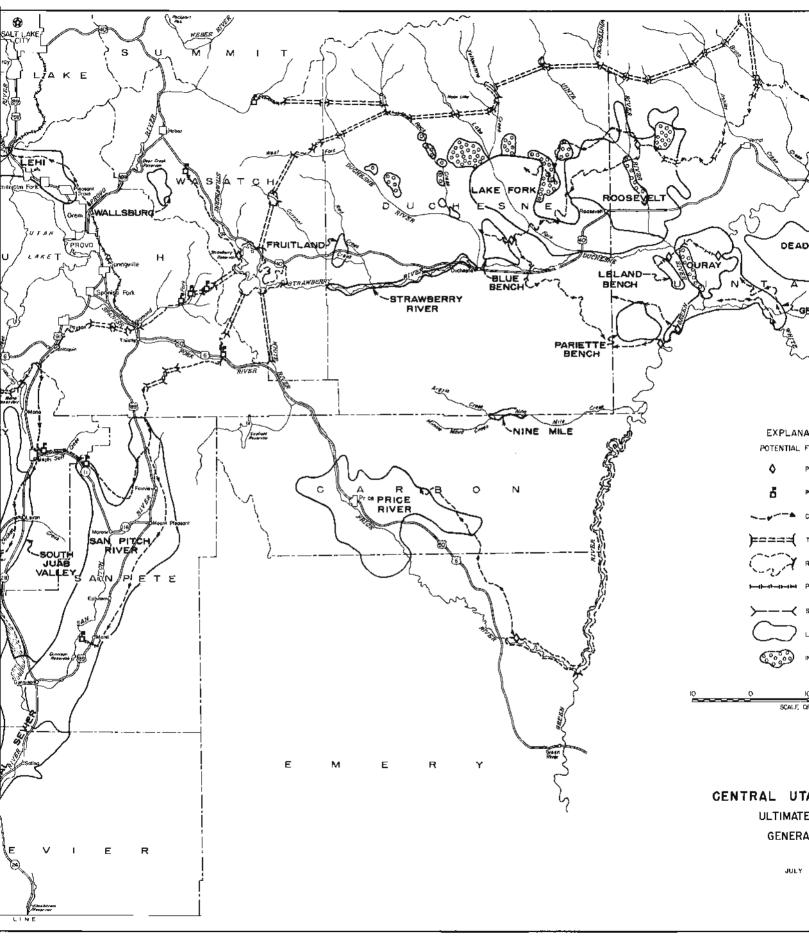
Bureau of Reclamation, "Central Utah Project Ultimate Phase: Inventory of Available Data" (1965). *Elusive Documents*. Paper 97. http://digitalcommons.usu.edu/elusive_docs/97

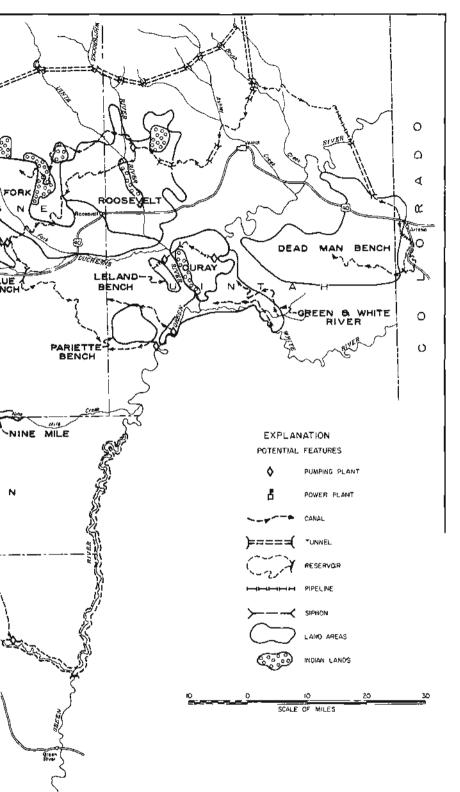
This Report is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in Elusive Documents by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.

CENTRAL UTAH PROJECT ULTIMATE PHASE

INVENTORY OF AVAILABLE DATA


OCTOBER 1965


Bureau of Reclamation, Region 4 Central Utah Projects Office, Provo, Utah Palmer B. DeLong, Project Manager CENTRAL UTAH PROJECT ULTIMATE PHASE


INVENTORY OF AVAILABLE DATA

October 1965

Bureau of Reclamation, Region 4 Central Utah Projects Office, Provo, Utah Palmer B. DeLong, Project Manager

CENTRAL UTAH PROJECT ULTIMATE PHASE GENERAL MAP

JULY 1964

CONTENTS

		Page
Chapter	I	General discussions
_		Introduction
		Needs for the project 2
		Climate
		Population 4
		Public facilities
		Industrial development
		Natural resources
Chapter	II	9
		Potential storage sites
		Topography, 10
		Geology and materials 10
		Area capacity curves 10
		Future investigations 10
Chapter	III	Water supply
1		Introduction
		Uinta Basin
		Water resources
		Quality of water
		Water requirements
		Cropping pattern
		Consumptive use
		Farm delivery requirement
		Diversion requirements
		Reservoir evaporation losses
		Operation studies
		Water rights
		Duchesne River
		Uintah unit application
		Ultimate phase Application No. 36645 . 50
		Ashley Creek
		Brush Creek
		Sevier River drainage
		Water resources
		Runoff records
		Quality of water
		Water requirements
		Cropping patterns
		Diversion requirements
		Reservoir evaporation losses
		Water rights
		Price River Basin
		Water resources
		Quality of water
		Water requirements
		Reservoir evaporation losses
		MERCIAOTI CARPOLATION TOPPER • • • • • • • • • • • •

CONTENTS (Continued)

		Page
Chapter III	Water supply (Continued)	
	Price River Basin (Continued)	
	Water rights	66
	Decreed rights on Price River	66
	Tripartite contract	67
CHAPTER IV	Ground water	68
	Introduction	68
	Wasatch Front summary	69
	Discussion by areas	70
	Jordan Valley	70
	Northern Utah Valley	75
	Southern Utah Valley	76
	Springville-Santaquin district	76
	Goshen district	76
	Northern Juab Valley	77
	Sevier River areas	78
	Central Sevier Valley	79
	Upper Sevier Valleys	80
	Sevier Desert	81
	Sanpete Valley	83
	Pavant Valley	84
Chapter V	Project lands and drainage	89
charpeet (Land inventory	89
	General	89
	Areas	90
	Deadman Bench area	90
	Green and White Rivers area	90
	Roosevelt area	93
	Ouray area	93
	Lake Fork area	94 94
	Leland Bench area	94
	Pariette Bench area	95
	Blue Bench area	95 06
		96 06
	Strawberry River area	96 07
	Nine Mile area	97
	Wallsburg area	97
	Bingham area	97
		98
	Cedar Valley area	98
	Cherry Valley area	99
	Dog Valley area	99
	South Juab area	100
	Tintic Valley area	100
	Holden-Fillmore area	100
	Upper Sevier River area	101
	Central Sevier area	101
	Sevier Bridge pump area	102

.

		Page
Chapter V	Project lands and drainage (Continued)	
	Lend inventory (Continued)	
	Areas (Continued)	
	Delta area	102
	San Pitch River area	103
	Price River Basin area	103
	Indian lands	104
	Drainage inventory	104
	Areas	105
	Deadman Bench area	105
	Green and White Rivers area	105
	Roosevelt area	105
	Ouray area	106
	Lake Fork area	106
	Leland Bench area	107
	Pariette Bench area	107
	Blue Bench area	107
	Fruitland area	108
	Strawberry River area	108
	Nine Mile area	108
	Wallsburg area	108
	Bingham area	108
	Lehi area	108
	Cedar Valley area	109
	Cherry Valley area	109
	Dog Valley area	109
	South Juab area	110
	Tintic Valley area	110
	Holden-Fillmore area	110
	Upper Sevier area	110
	Central Sevier area	111
	Sevier Bridge pump area	111
	Delta area	111
	San Pitch River area	112
	Price River area	112
Chapter VI	Municipal and industrial water	114
	Introduction	114
	Population growth	114
	Water requirements	118
	Salt Lake County	122
	Studies by Berger Associates, Inc	122
	Bureau of Reclamation studies	126
	Public water supply studies	127
	Little Dell Reservoir	127
	Jordanelle Reservoir	136
	Utah Lake	138
	Industrial water supply studies	139
	Population and water requirements	141

CONTENTS (Continued)

		Page
Chapter VI	Municipal and industrial water (Continued)	
	Water requirements (Continued)	
	Utah County	143
	Davis, Weber, Morgan, and Summit Counties	145
	Duchesne and Uintah Counties	148
	Carbon and Emery Counties	152
	Sevier River Basin and Juab County	156
	Tooele and Wasatch Counties	157
Chapter VII	Power	159
	Introduction	159
	Power requirements	159
	Potential hydroelectric development	160
	Comprehensive plan of 1951 authorizing report	160
	Diamond Fork power system	160
	Hayes Powerplant	161
	Monks Hollow Powerplant	161
		161
	Uinta Basin Powerplants	161
	Yellowstone Powerplant	
	Whiterocks Powerplant	162
	Other potential south slope Uinta	
	powerplants	162
	Green River Powerplants	162
	Echo Park	162
	Split Mountain	163
	Gray Canyon	163
	Other potential powerplants	163
	Pumped storage development	164
	Project pumping	164
	Comprehensive plan of 1951 authorizing report	164
		165
	Direct diversion from Green River plans	
	Unit pumping developments	166
	Woodside pumping plant	166
	Pariette pumping plant	166
	Wonsits punping plant	167
	Ground Water pumping plants	167
	Effect on existing powerplants	167
	Additional data required	167
Chapter VI		169
	Introduction	169
	Climatological data	169
		169
	Farm types	169
	Crop distribution	
	Crop yields	173
	Estimated payment capacity	173
	Irrigation benefits	173
	Procedure used for estimating irrigation	
	benefits	173

CONTENTS (Continued)

			Page
Chapter	IIIV	Agriculture economy (Continued)	
		Additional data required	176
		Gooseberry project (Sanpete County)	176
		Municipal and industrial water benefits	176
Chapter	IX	Potential developments	181
		General	181
		Upper Colorado River Basin	182
		Uinta Basin	182
		Price River Basin	182
		Bonneville Basin	182
Chapter	Х	Future investigations	186

TABLES

PageSummary of climatological data through December 19623Nineteen-county population summary, 1900-504Unta Basin drainage area potential reservoir sites20, 21Great Salt Lake drainage basin potential reservoir sites22Sevier River Basin potential reservoir sites24San Pitch River Basin potential reservoir sites25Price River Basin potential reservoir sites27Nine Mile drainage basin potential reservoir sites28Summary of stream gaging dataUinta Basin31Annual streamflow in the Uinta Basin32Monthly climatological dataUinta Basin veather stations34Cropping patternsUinta Basin35Summary of irrigation diversion requirementsUinta Basin36Evaporation ratesMoon Lake and Big Sand Mash Reservoirs38Water supply at Strawberry aqueduct under ultimate phase39Estimated streamflow bypassed at Strawberry aqueduct to lands not served by Flaming Gorge aqueduct40Existing reservoirs, Uinta River system42Summary of Stream gaging dataSevier River Basin55Cropping patternsSevier River Basin57Summary of stream gaging dataPrice River Basin57Summary of stream gaging dataPrice River Basin59Evaporation rates-Sevier River Basin57Summary of irrigation diversion requirementsDrive River area58Coropping patternsSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of irrigation diversion requiremen
Uinta Basin drainage area potential reservoir sites 12-18 Utah Lake drainage basin potential reservoir sites 20, 21 Great Salt Lake drainage basin potential reservoir sites 22 San Pitch River Basin potential reservoir sites 24 San Pitch River Basin potential reservoir sites 24 San Pitch River Basin potential reservoir sites 25 Price River Basin potential reservoir sites 26 Summary of stream gaging dataUinta Basin 31 Annual streamflow in the Uinta Basin 32 Monthly climatological dataUinta Basin weather stations 33 Summary of irrigation diversion requirementsUinta Basin 36 Evaporation ratesMoon Lake and Big Sand Mash Reservoirs 38 Water supply at Strawberry aqueduct under ultimate phase 39 Estimated streamflow bypassed at Strawberry aqueduct to lands 42 Summary of Duchesne River lands and water rights 43 Summary of Stream gaging dataSevier River Basin 43 Summary of stream gaging data-Sevier River Basin 55 Cropping patterns-Sevier River Basin 55 Cropping patterns-Sevier River Basin 55 Cropping patterns-Sevier River Basin 57 <tr< td=""></tr<>
Utah Lake drainage basin potential reservoir sites
Great Salt Lake drainage basin potential reservoir sites22Sevier River Basin potential reservoir sites24San Pitch River Basin potential reservoir sites25Price River Basin potential reservoir sites27Nine Mile drainage basin potential reservoir sites28Summary of stream gaging dataUinta Basin31Annual streamflow in the Unita Basin32Monthly climatological dataUinta Basin weather stations34Cropping patternsUinta Basin35Summary of irrigation diversion requirementsUinta Basin36Evaporation ratesMoon Lake and Big Sand Wash Reservoirs38Water supply at Strawberry aqueduct under ultimate phase39Estimated streamflow bypassed at Strawberry aqueduct to lands40not served by Flaming Gorge aqueduct42Existing reservoirs, Lake Fork River system43Summary of Duchesne River lands and water rights48Recent water right applications with priority ahead of the Bonneville unit55Cropping patternsSevier River Basin57Summary of stream gaging dataSevier River Basin59Evaporation rates-Sevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin55Cropping patterns-Sevier River Basin63Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice
Sevier River Basin potential reservoir sites 24 San Pitch River Basin potential reservoir sites 25 Price River Basin potential reservoir sites 27 Nine Mile drainage basin potential reservoir sites 27 Summary of stream gaging dataUinta Basin 31 Annual streamflow in the Uinta Basin 32 Monthly climatological dataUinta Basin weather stations 34 Cropping patternsUinta Basin 34 Cropping patternsUinta Basin 35 Summary of irrigation diversion requirementsUinta Basin 36 Evaporation ratesMoon Lake and Big Sand Wash Reservoirs 38 Water supply at Strawberry aqueduct under ultimate phase 39 Estimated streamflow bypassed at Strawberry aqueduct to lands 40 not served by Flaming Gorge aqueduct 40 Existing reservoirs, Lake Fork River system 42 Existing reservoirs, Uinta River system 43 Summary of Stream gaging dataSevier River Basin 55 Cropping patternsSevier River Basin 55 Cropping patternsSevier River Basin 55 Summary of stream gaging dataPrice River Basin 59 Summary of irrigation diversion requirementsSevier Riv
San Pitch River Basin potential reservoir sites25Price River Basin potential reservoir sites27Nine Mile drainage basin potential reservoir sites28Summary of stream gaging dataUinta Basin31Annual streamflow in the Uinta Basin32Monthly climatological dataUinta Basin weather stations34Cropping patternsUinta Basin35Summary of irrigation diversion requirementsUinta Basin36Evaporation ratesMoon Lake and Big Sand Wash Reservoirs38Water supply at Strawberry aqueduct under ultimate phase39Estimated streamflow bypassed at Strawberry aqueduct to lands not served by Flaming Gorge aqueduct40Existing reservoirs, Like Fork River system42Existing reservoirs, Uinta River system43Summary of Duchesne River lands and water rights49Summary of stream gaging dataSevier River Basin55Cropping patternsSevier River Basin57Summary of stream gaging dataPrice River Basin59Summary of stream gaging dataPrice River Basin60Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Sum
Price River Basin potential reservoir sites 27 Nine Mile drainage basin potential reservoir sites 28 Summary of stream gaging dataUinta Basin 31 Annual streamflow in the Uinta Basin 32 Monthly climatological dataUinta Basin weather stations 34 Cropping patternsUinta Basin 35 Summary of Irrigation diversion requirementsUinta Basin 36 Evaporation ratesMoon Lake and Big Sanū Wash Reservoirs 38 Water supply at Strawberry aqueduct under ultimate phase 39 Estimated streamflow bypassed at Strawberry aqueduct to lands 40 Existing reservoirs, Uinta River system 42 Existing reservoirs, Lake Fork River system 43 Summary of Duchesne River lands and water rights 48 Recent water right applications with priority ahead of the Bonneville unit 57 Summary of irrigation diversion requirementsSevier River area 58 Monthly climatological dataSevier River Basin 60 Summary of stream gaging dataSevier River Basin 57 Summary of irrigation diversion requirementsSevier River area 58 Monthly climatological dataSevier River Basin 60 Summary of stream gaging dataPrice River
Nine Mile drainage basin potential reservoir sites 28 Summary of stream gaging dataUinta Basin 31 Annual streamflow in the Uinta Basin 32 Monthly climatological dataUinta Basin weather stations 34 Cropping patternsUinta Basin 35 Summary of irrigation diversion requirementsUinta Basin 36 Evaporation ratesMoon Lake and Big Sand Wash Reservoirs 38 Water supply at Strawberry aqueduct under ultimate phase 39 Estimated streamflow bypassed at Strawberry aqueduct to lands 40 Existing reservoirs, Uinta River system 42 Existing reservoirs, Lake Fork River system 43 Summary of Duchesne River lands and water rights 48 Recent water right applications with priority ahead of the 55 Summary of stream gaging dataSevier River Basin 55 Summary of stream gaging dataSevier River Basin 57 Summary of stream gaging dataSevier River Basin 60 Summary of stream gaging dataSevier River Basin 60 Summary of stream gaging dataSevier River Basin 55 Cound water summaryWastch Front 60 Summary of stream gaging dataPrice River Basin 63
Summary of stream gaging dataUinta Basin 31 Annual streamflow in the Uinta Basin 32 Monthly climatological dataUinta Basin veather stations 34 Cropping patternsUinta Basin 35 Summary of irrigation diversion requirementsUinta Basin 36 Evaporation ratesMoon Lake and Big Sand Wash Reservoirs 38 Water supply at Strawberry aqueduct under ultimate phase 39 Estimated streamflow bypassed at Strawberry aqueduct to lands 40 Existing reservoirs, Lake Fork River system 42 Existing reservoirs, Lake Fork River system 43 Summary of Duchesne River lands and water rights 43 Summary of stream gaging dataSevier River Basin 55 Cropping patternsSevier River Basin 57 Summary of irrigation diversion requirementsSevier River area 58 Monthly climatological dataSevier River Basin 59 Evaporation rates-Sevier River Basin 60 Summary of irrigation diversion requirementsPrice River Basin 63 Summary of irrigation diversion requirementsPrice River Basin 63 Summary of irrigation diversion requirementsPrice River Basin 64 Ground water summaryWasatch Front 64
Annual streamflow in the Uinta Basin
Monthly climatological dataUinta Basin weather stations 34 Cropping patternsUinta Basin 35 Summary of irrigation diversion requirementsUinta Basin 36 Evaporation ratesMoon Lake and Big Sand Wash Reservoirs 38 Water supply at Strawberry aqueduct under ultimate phase 39 Estimated streamflow bypassed at Strawberry aqueduct to lands 40 Existing reservoirs, Uinta River system 42 Existing reservoirs, Lake Fork River system 43 Summary of Duchesne River lands and water rights 48 Recent water right applications with priority ahead of the 49 Summary of stream gaging dataSevier River Basin 57 Cropping patternsSevier River Basin 57 Summary of irrigation diversion requirementsSevier River area 58 Monthly climatological dataSevier River Basin 60 Summary of stream gaging dataPrice River Basin 63 Summary of irrigation diversion requirementsPrice River Basin 63 Summary of irrigation diversion requirementsPrice River Basin 66 Ground water summaryWasatch Front 69 Ground water withdrawals 75 Annual withdrawals from pumped wells in Sevier Desert 82 </td
Cropping patternsUinta Basin
Summary of irrigation diversion requirementsUinta Basin36Evaporation ratesMoon Lake and Big Sand Wash Reservoirs38Water supply at Strawberry aqueduct under ultimate phase39Estimated streamflow bypassed at Strawberry aqueduct to lands40not served by Flaming Gorge aqueduct40Existing reservoirs, Uinta River system42Existing reservoirs, Lake Fork River system43Summary of Duchesne River lands and water rights48Recent water right applications with priority ahead of the Bonneville unit49Summary of stream gaging dataSevier River Basin57Cropping patternsSevier River Basin59Evaporation ratesSevier River Basin59Evaporation ratesSevier River Basin60Summary of stream gaging dataPrice River Basin61Ground water summaryWasatch Front66Ground water dischargeJordan Valley70Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from vells (estimated) and number of wells in Pavant86Valley, 1946-639191University of Utah study potential ultimate phase area91
Evaporation ratesMoon Lake and Big Sand Wash Reservoirs38Water supply at Strawberry aqueduct under ultimate phase39Estimated streamflow bypassed at Strawberry aqueduct to lands39not served by Flaming Gorge aqueduct40Existing reservoirs, Uinta River system42Existing reservoirs, Lake Fork River system43Summary of Duchesne River lands and water rights48Recent water right applications with priority ahead of the Bonneville unit49Summary of stream gaging dataSevier River Basin55Cropping patternsSevier River Basin57Summary of irrigation diversion requirementsSevier River area58Monthly climatological dataSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin65Evaporation rateScofield Reservoir66Ground water summaryWasatch Front70Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from uells (estimated) and number of wells in Pavant Valley, 1946-6386Inventory of potential land91University of Utah study potential ultimate phase area91
Water supply at Strawberry aqueduct under ultimate phase
Estimated streamflow bypassed at Stravberry aqueduct to lands not served by Flaming Gorge aqueduct
not served by Flaming Gorge aqueduct
Existing reservoirs, Uinta River system42Existing reservoirs, Lake Fork River system43Summary of Duchesne River lands and water rights48Recent water right applications with priority ahead of the Bonneville unit49Summary of stream gaging dataSevier River Basin55Cropping patternsSevier River Basin57Summary of irrigation diversion requirementsSevier River area58Monthly climatological dataSevier River Basin59Evaporation ratesSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin65Evaporation rateScofield Reservoir66Ground water summaryWasatch Front69Ground water dischargeJordan Valley70Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from uells (estimated) and number of wells in Pavant Valley, 1946-6386Inventory of potential land91University of Utah study potential ultimate phase area91
Existing reservoirs, Lake Fork River system43Summary of Duchesne River lands and water rights48Recent water right applications with priority ahead of the Bonneville unit49Summary of stream gaging dataSevier River Basin55Cropping patternsSevier River Basin57Summary of irrigation diversion requirementsSevier River area58Monthly climatological dataSevier River Basin59Evaporation ratesSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin65Evaporation rateScofield Reservoir66Ground water summaryWasatch Front69Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from wells (estimated) and number of wells in Pavant Valley, 1946-6386Inventory of Utah study potential ultimate phase area91
Summary of Duchesne River lands and water rights48Recent water right applications with priority ahead of the Bonneville unit49Summary of stream gaging dataSevier River Basin55Cropping patternsSevier River Basin57Summary of irrigation diversion requirementsSevier River area58Monthly climatological dataSevier River Basin59Evaporation ratesSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of stream gaging dataPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin65Evaporation rateScofield Reservoir66Ground water summaryWasatch Front69Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from vells (estimated) and number of wells in Pavant Valley, 1946-6386Inventory of Utah study potential ultimate phase area91
Recent water right applications with priority ahead of the Bonneville unit
Bonneville unit
Summary of stream gaging dataSevier River Basin55Cropping patternsSevier River Basin57Summary of irrigation diversion requirementsSevier River area58Monthly climatological dataSevier River Basin59Evaporation ratesSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin65Evaporation rateScofield Reservoir66Ground water summaryWasatch Front69Ground water dischargeJordan Valley70Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from uells (estimated) and number of wells in Pavant86Inventory of potential land91University of Utah study potential ultimate phase area91
Cropping patternsSevier River Basin
Summary of irrigation diversion requirementsSevier River area . 58 Monthly climatological dataSevier River Basin
Monthly climatological dataSevier River Basin59Evaporation ratesSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin65Evaporation rateScofield Reservoir66Ground water summaryWasatch Front69Ground water dischargeJordan Valley70Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from uells (estimated) and number of wells in Pavant86Inventory of potential land91University of Utah study potential ultimate phase area99
Evaporation ratesSevier River Basin60Summary of stream gaging dataPrice River Basin63Summary of irrigation diversion requirementsPrice River Basin65Evaporation rateScofield Reservoir66Ground water summaryWasatch Front69Ground water dischargeJordan Valley70Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from uells (estimated) and number of wells in Pavant86Inventory of potential land91University of Utah study potential ultimate phase area
Summary of stream gaging dataPrice River Basin
Summary of irrigation diversion requirementsPrice River Basin . 65 Evaporation rateScofield Reservoir
Evaporation rateScofield Reservoir66Ground water summaryWasatch Front69Ground water dischargeJordan Valley70Ground water withdrawals75Annual withdrawals from pumped wells in Sevier Desert82Discharge from wells (estimated) and number of wells in Pavant86Inventory of potential land91University of Utah study potential ultimate phase area
Ground water summaryWasatch Front
Ground water dischargeJordan Valley
Ground water withdrawals
Annual withdrawals from pumped wells in Sevier Desert
Discharge from wells (estimated) and number of wells in Pavant Valley, 1946-63
Valley, 1946-63
Inventory of potential land
University of Utah study potential ultimate phase area
2000, and 2020
Summary of population projections by river basins and countles
without major resource development
Population projection for specific industrial development 118
Additional water requirements for specific industrial development. 119

TABLES (Continued)

Maineraite and Mtale atural contact on a state of the form 100	60 an 8		P	age
University of Utah study water requirement data for 196 projections for 1980, 2000, and 2020		• •	•	120
Summary of municipal and industrial water requirements water supply analysis	 	• •	•	123 127 128 128
Monthly distribution of annual demand	ent			128
conditions and local development	1			129 132
Summary of Salt Lake County water supply studieslocal regulation storage with Bonneville unit	1			133
Summary of Salt Lake aqueduct capacity studies Summary of water supply studies with Jordanelle Reserve	 oir		•	135 137
Estimated water requirements for lower Jordan area, Sa Lake County		•	•	140
Salt Lake County population water requirement data University of Utah study		•	•	141
suppliesSalt Lake County				142 143
Utah County population and water requirement data University of Utah study				143
Population and water requirement for Utah County Central Utah project water requirementsUtah County Projected population and water requirement dataDavis		•		144 145
Morgan, and Summit Counties	••••		•	147
flow	irement	;		148
data	develop	men	t	150 151
in Uinta Basin	inta			151
Estimated municipal and industrial water requirements Duchesne and Uintah Counties	for ••••	•	-	152
Carbon and Emery Counties population and water require Population and water requirementsSevier River Basin		rta	•	154 156
Juab County		•	•	156
Counties			•	157 159 170
			_	7 2002
vii	1			

TABLES (Continued)

	Page
Farm types by percent	
	172
Average yields per acre of irrigated crops	174
Estimated payment capacity per acre and per acre-foot by	
counties	
	177
	178
Comparative economic dataGooseberry project	179

MAPS AND FIGURES

	Page
Central Utah project, ultimate phase, general map (289-418-12) Frontis	piece
Uinta Basin drainage area potential reservoir sites location map (289-418-9)	11
reservoir sites location map (289-418-7) Sevier and San Pitch River Basins potential reservoir	19
sites location map (289-418-6)	23
sites location map (289-418-29) Uinta Basin gaging stations and runoff (289-418-28) Sevier River Basin stream gaging stations and runoff (289-418-17) Price River Basin stream gaging stations and runoff (289-418-16). Potential ground water area (289-418-19)	26 33 56 64 71
Jordan Valley districts and subdistricts (289-418-18) Graph showing relation of number of pumped irrigation wells and total discharge to discharge from flowing wells in	72
Pavant Valley, 1946-63 (289-418-20)	87 92
(289-417-27) Curve of estimated municipal and industrial water demands	121
(289-418-26)	124
County (289-418-25)	146
Weber, Morgan, and Summit Counties (289-418-21)	149
and Uintah Counties (289-418-23)	1 53
Emery Counties (289-418-24)	155
Millard, Piute, Sanpete, Sevier, and Juab Counties (289-418-22) Potential development inventory (289-418-8)	158 183

іx

CHAPTER I

GENERAL DISCUSSIONS

Introduction

The plan for the Central Utah project involves a diversion of water from streams in the Uinta Basin in the Upper Colorado River Basin to the closed Bonneville Basin in Central Utah and other associated water resource developments in both basins. Construction of the initial phase of the project was authorized by the Colorado River Storage Project Act of April 11, 1956 (70 Stat. 105). The initial phase has been divided into four units. Three of these, the Vernal, Jensen, and Upalco units, are developments in the Uinta Basin. The fourth, or the Bonneville unit, involves a diversion from the Uinta Basin to the Bonneville Basin and related developments in both basins. Construction is essentially completed on the Vernal unit and will commence this year on the Bonneville unit. Definite plan studies are underway on the Upalco and Jensen units.

The ultimate phase will expand on the initial phase development. Although plans are not yet definitely formulated, its purpose will be to increase the transbasin diversion to the Bonneville Basin and to provide water for replacement and additional use in the Uinta Basin. Water for the Uinta Basin will be provided by developments on streams originating in the basin and from the Green River either by pumping or by gravity flow through a tunnel heading at the existing Flaming Gorge Reservoir. Various alternatives will be considered for water sources, sites of storage and conveyance facilities, and places and nature of use. The principal facilities and irrigation service areas that are being considered for the ultimate phase are shown on the frontispiece map.

One part of the ultimate phase, designated as the Uintah unit, has been segregated for separate study, as it could be constructed and operated independently of other parts of the project. A feasibility report on this unit is scheduled for completion on July 1967. The unit will include storage developments on local streams (not shown on frontispiece map) to provide supplemental water for lands presently irrigated from the Uinta and Whiterocks Rivers in the Uinta Basin.

This report has been prepared as a means of bringing together all of the available data that may be useful in outlining and conducting an orderly investigation of the ultimate phase as a whole. A preliminary appraisal report on the ultimate phase scheduled for completion in 1968 will facilitate the selection of the optimum justifiable scheme of development.

Needs for the Project

The Central Utah project offers Utah one of the most practicable opportunities to use the major part of its share of Colorado River water as apportioned by the Upper Colorado River Compact of 1948. Water is the limiting factor in the future progress of the Central Utah area. The area's continued natural resource development and economic and population growth are assured with the water the project would make available. Without such expanded water supplies a rigid ceiling would be imposed on Central Utah's future growth. In the Bonneville Basin where the water requirement is the greatest, undeveloped water supplies are the shortest.

Utah officials and informed citizens generally recognize that the State's potential for economic growth and development is limited by its water supply. They look to the Central Utah project as the only means of providing large amounts of additional water to the most highly developed part of the State where population growth and industrial development are continuing at a rate far above the average for the State and the Nation.

Dry farming cannot be practiced successfully in most of the project area because of the limited rainfall during the growing season. Most of the readily available local water sources are already fully developed. It is anticipated that by the time water is made available by the ultimate phase the municipal and industrial requirement of the area will be far in excess of available local supplies. In fact, the municipal and industrial demand may be great enough to utilize much of the water developed by the project.

Climate

The ultimate phase area generally has a temperate, semiarid climate with relatively warm summers and cold winters that is usually satisfactory for irrigated agriculture. The Bonneville Basin with lower elevations has higher precipitation and temperatures with longer growing seasons than the Uinta Basin area. The climate in both basins varies considerably from place to place according to elevation. Temperatures are lower and the growing seasons shorter in and near the mountain valleys than on the lower elevations of the basin floors.

Climatological data at a number of stations in the project area are tabulated on the following page. The four stations--Altamont, Duchesne, Roosevelt, and Vernal--are representative of conditions in the Uinta Basin area. The Price Game Farm station is representative of the Price area. The remaining stations are representative of conditions that exist on the Bonneville Basin floor from Salt Lake City south to Milford.

Climate limits the variety of crops that can be successfully produced in the Uinta and Price River Basins to alfalfa, small grains, silage corn,

	Sta.	Year	s Preci	pitati	on (inc	hes)						age annu		
	elev.	of		Ave.							GIOW	ing perio	ods	
	(ft.	pre-		grow-			Years	Temp	eratu	re	(days)		
	above	cip.		ing	Annu	al	of	Ave.	10.00		Frost-			
	sea	rec-	Ave.	sea-	extre	mes	temp.	an-	Extre		free			
Location of station	level)	ord	annual	son	High	Low	record	nual	High	Low	(32°F)	Seaso	n	
Bonneville Basin														
Beaver	5860	46	11.35	6.06	21,20	5.82	33	47.2	102	-34	106	142 May	11-Sep	30
Delta	4759	21	7.60	3.03	12.87	3.32	21	50.2	106	-25	145	170 Apr	23-Oct	ç
Elberta	4690	60	9.90	5.03	14.95	5.18	54	50.2	109	-28	133	194 Apr	17-0ct	27
Fillmore	5250	70	14.04	4.99	21.28	6.72	69	52.4	115	-23	152	176 Apr	25-Oct	17
Levan	5300	72	13.22	4.54	26.22	7.20	69	49.4	104	-28	135	150 May	3-Oct	12
Milford	5028	55	8.00	2.98	13.17	5.06	45	49.0	104	-22	120	153 May	3-Oct	1
Nephi	5133	56	14.75	7.47	22.34	7.21	19	51.7	106	-18	134	200 Apr	11-0ct	28
Oak City	5075	48	11.60	4.70	19.05	6,59	45	52.4	108	-25	138	178 Apr	26-Oct	2]
Panguitch	6720	34	9.41	5.56	15.21	5.44	31	43.5	97	-38	71	106 Jun	1-Sep	14
Piute Dam	5900	47	8.14	4.40	14.73	4.54	36	48.8	101	-32	134	154 May	6-Oct	f
Provo	4470	72	12.87	5,55	21.82	6.94	50	49.3	108	-35	146	193 Apr	10-0ct	19
Richfield Radio KSVC	5300	44	8.01	3.29	13.00	1.82	43	49.5	104	-28	122	148 May	8-Oct	:
Salt Lake City	4220	2821	13.90	6.65	18.79	9.36	2821	51.1	106	-30	166	202 Apr	8-Oct	27
Tooele	4820	65	15.48	6.64	24.41	9,93	64	51.5	102	-14	169	209 Apr		
Average	5180	51	11.31	5.06	18.50	6.08	43	49.7	105	-27	134	170 Apr	27-Oct	14
Price River Basin														
Price Game Farm	5580	35	9.24	4.82	19.55	4.47	31	49.6	108	-31	150	178 Apr	26-Oct	19
San Pitch River Basin														
Manti	5585	62	11.93	4.28	18.94	7.08	62	47.7	110	-27	130	158 May	7-0ct	12
Moroni	5525	49	9,69	3.43	20.72	5.64	44	47.3	107	-30	116	147 May	11-0ct	
Average	5555	56	10.81	3.86	19.83	6.36	53	47.5	109	-29	123	153 May	9-Oct	Ş
Vinta Basin														
Altamont (Mt. Emmons)	6100	23	7.521/	4.56	12.76	3.66	25	44.81	98	-32	116	170 Apr	25-0ct	12
Duchesne	5515	56	9.07	3.93	15.70	4.60	53	44.6	99	-43	120	164 Apr	28-Oct	9
Roosevelt	5094	22	7.53	3.98	13.94	4.14	19	46.7	105	-32	136	176 Apr		
Vernal	5280	61	7.97	4.25	14.78	4.62	61	44.0	103	-38		184 Apr		
Average	5497	41	8.02	4.18	14.30	4.26	40	45.0	101	-36	123	174 Apr	23-Oct	1

1/ Average determined from 10-year period, 1953-1962, as previous years' record not available.
2/ Salt Lake Airport record only.

w . and pasture. In the Bonneville Basin areas the more favorable climate permits the production of a wide variety of crops including berries, deciduous fruits, and canning crops.

Population

The combined 1960 population of the 19 counties included in the ultimate phase project area totaled 786,083 which is about 88 percent of the population of Utah. About 85 percent of the people of this area reside in the industrialized Salt Lake, Weber, Utah, and Davis Counties. The population of these four counties increased from 341,503 in 1940 to 665,530 in 1960, a gain of about 95 percent over 1940 as compared to a 37 percent increase for the Nation as a whole. The combined population of the 15 rural counties of the area (Beaver, Carbon, Duchesne, Emery, Garfield, Juab, Millard, Morgan, Piute, Sanpete, Sevier, Summit, Tooele, Uintah, and Wasatch) declined from 128,249 in 1940 to 120,553 in 1960, reflecting the movement of people from rural communities to urban centers. The population of the 19 counties involved is shown at 20-year intervals in the following table.

		Population		
County	1900	1920	1940	1.960
Beaver	3,613	5,139	5,014	4,331
Carbon	5,004	15,489	18,459	21,135
Davis	7,996	11,450	15,784	64,760
Duchesne	1/	9,093	8,958	7,179
Emery	4,657	7,411	7,072	5,546
Garfield	3,400	4,768	5,253	3,577
Juab	10,082	9,871	7,392	4,597
Millard	5,678	9,659	9,613	7,866
Morgan	2,045	2,542	2,611	2,837
Piute	1,954	2,770	2,203	1,436
Salt Lake	77,725	159,282	211,623	383,035
Sanpete	16,313	17,505	16,063	11,053
Sevier	8,451	11,281	12,112	10,565
Summit	9,439	7,862	8,714	5,673
Tooele	7,361	7,965	9,133	17,868
Uintah	6,458	8,470	9,898	11,582
Utah	32,456	40,792	57,382	106,991
Wasatch	4,736	4,625	5,754	5,308
Weber	25,239	43,463	56,714	110,744
Total	232,607	379,437	469,752	786,083
1/0rg	anized from	part of Wagatoh	County in 1015	anda

1/ Organized from part of Wasatch County in 1915, and a portion of Uintah County was annexed in 1917.

Public Facilities

In general, the project area is well served with essential public facilities. The Bonneville Basin is served by various railroad lines extending from Salt Lake City in almost every direction. Major highways also traverse the Bonneville Basin area. Though no railroads enter the Uinta Basin, the area is well served by a major transcontinental highway. The Price River area is served by a mainline railroad and a transcontinental highway. Branch highways are plentiful, and bus and truck lines on regular schedules reach all parts of the project area. Several transcontinental airlines make regularly scheduled stops at Salt Lake City, and feeder lines serve the larger communities in the area.

Telephone and telegraph facilities are available in all parts of the area. Electric power is provided to the Bonneville and Price River Basins, through the interconnected Utah Power & Light Company system and by several small municipal power systems in the Bonneville Basin. The Uinta Basin is supplied by the Utah Power & Light Company and by the Moon Lake Electric Association. an REA cooperative.

Most of the communities within the project area have private municipal water systems, generally supplied from nearby mountain streams and springs. Some of the larger cities, having exhausted their local supplies, have drilled wells and have reached out great distances to obtain water to supplement the local sources. Modern water purification or chlorination and sewage disposal plants are found in most of the larger communities.

Good educational facilities are located throughout the project area, consisting of several universities and numerous up-to-date elementary, junior high, and high schools.

Industrial Development

Agriculture has generally been the basic industry in the overall project area and is mainly centered around livestock production with its attendant feed crops, although diversified crops are successfully grown in the Bonneville Basin. Since about 1940 industrial expansion and growth have been pronounced in the highly industrialized areas of Salt Lake, Davis, Weber, Utah, and Carbon Counties where agriculture is no longer the predominant industry. This industrial development is mostly related to the mineral and agricultural products of the region and to national defense and space exploration.

Production at the Kennecott Copper Corporation's mine in Salt Lake Valley has a higher value than any other open-pit copper mine in North America. The copper is concentrated, smelted, and electrolytically refined at plants near Salt Lake City. Gold, silver, molybdenite, selenium,

and other metals are also produced in significant quantities at the Kennecott mine. Iron and steel are produced by U.S. Steel's Geneva plant near Provo, one of the largest fully integrated steel plants west of the Mississippi River. Several manufacturing plants using locally produced steel and copper are operating in the area.

Various transportation and service industries have helped make Salt Lake City and Ogden major trade and distribution centers in the mountain west. In addition, a number of processing plants for agricultural products are prevalent, and plants which produce chemicals, stone, glass, paint, and clay products are located in the area. In the Salt Lake, Davis, and Weber County areas are such important defense and space exploration installations as the Chemical Propellant Division of Hercules Powder Company, Sperry Utah Engineering Laboratories of Sperry Rand Corporation, Litton Industries, Hill Air Force Base, and Marquardt Aircraft Corporation.

Business in the Uinta Basin has been stimulated by local oil discoveries near Vernal and Roosevelt and by phosphate and potash developments in recent years and also by development of the important Rangely oil field in Colorado, about 50 miles east of Vernal.

Coal mining in Carbon County is responsible for Utah's ranking as tenth in the Nation in coal production and first among the states west of the Mississippi River. Coal constitutes the major industry in the Price River Basin. Carbon dioxide is mined from wells near Wellington from which dry ice is manufactured, and substantial quantities of natural gas are mined in the area around Price. A missile base at Green River, about 60 miles southeast of Price, serves as an operational testing and proving base.

A substantial source of income to the project area is provided through recreation and tourism. Recreation is primarily in the form of fishing, hunting, camping, boating, water-skiing, and winter sports on the nearby streams, lakes, and mountains. Some of the Nation's most scenic attractions are in or easily accessible to the Central Utah project area. These attractions include national monuments, lakes, streams, and beautiful mountain scenery. Tourism has developed into an important industry and is increasing in volume each year.

Natural Resources

Utah and the immediate surrounding areas have greater quantities of mineral wealth--fuels, metals, and chemicals--than any other comparable area known. Discoveries of additional natural resources are still being made, but those already known assure continued industrial growth in the area. Future water resource development is essential for the full utilization of the area's natural resources and to create opportunities for industrial growth and agricultural expansion throughout the area.

Coal production in Utah is greater than the combined production of the other 10 western states. Large reserves are concentrated primarily in eastern Utah with the largest deposits in Carbon County in the vicinity of Price. Coal reserves in Utah have been estimated to be about 100 billion tons. Utah and the surrounding area contain about 35 percent of all the coal reserves of the United States and about 17 percent of all the reserves of the world. Utah coal is considered the highest quality bituminous coal on the western market. It is low in ash and moisture, extremely low in sulphur, and highly volatile with a high heat value.

Some of the Nation's largest deposits of oil shale lie undeveloped in eastern Utah. The deposits are saturated with an estimated 100 billion barrels of petroleum, an amount approximately five times the present estimated oil reserves of the entire United States. Geologists have labeled Uinta Basin as one of the leading potential oil fields.

Utah ranks first among the states in uranium ore production used in the manufacture of the atomic bomb and in nuclear powerplants. Vanadium, becoming increasingly important, is found and produced in connection with the uranium ores. Vast deposits are located in eastern Utah where radium and molybdenum are also found. Beryllium is also becoming more important for use in alloys, and large quantities of ore are found in the vicinity of Delta; this constitutes an important new potential industry.

Substantial supplies of natural gas are being discovered and mined in Utah. About 50 million cubic feet per day are being produced and delivered through an 18-inch pipeline from the area around Price to Utah County.

Vast reserves of carbon dioxide gas have been located in Carbon County. It is processed into dry ice and is used in the manufacture of carbonated beverages and in the mining industry as an explosive.

One of the few known national reserves of helium gas is located near Woodside in the Price River Basin. Near Vernal are found the greatest known deposits of thinly covered phosphate rock in the free world, which provides a basis for an extensive fertilizer industry. About 80 percent of the world's gilsonite is produced in the area. Iron ore mined near Cedar City and coke produced from Carbon County coal form the basis for steel production in Utah County.

Substantial reserves of low grade copper, lead, zinc, and manganese are found in the area and gold and silver are mined, usually as byproducts of other materials. Minerals found in the area, in addition to those previously mentioned, include potash, magnesium, sulphur, gypsum, salt; limestone, bituminous sandstone, and clays.

Water constitutes a valuable natural resource in the Central Utah project area, and development of most of the other resources is largely

dependent upon the available water supplies. Most of the easily accessible water resources have been appropriated, thus large-scale development will require the importation of additional water. Another important natural resource is manpower which is available in large numbers to supply new industries badly needed in the area.

The Central Utah project area has significant and diversified recreational potential. The terrain which varies from colorful desert to scenic alpine mountains with their crystal-clear streams, glacial lakes, and winter snows provides a natural setting for a great variety of outdoor recreation. Some areas are ideally located and could be readily adapted to winter sports of all kinds. Some of the best deer hunting available is to be found in this area, and elk are also present in significant numbers. This could be a fisherman's paradise with the great variety of game and fish and the choice between lake and stream fishing. The mountains contain campground and wilderness areas for camping, picnicking, swimming, boating, and water-skiing. One of the most common forms of recreation is to leisurely ride through parts of the area and enjoy the delightful scenery.

CHAPTER II

RESERVOIR SITE INVENTORY

Potential Storage Sites

Storage of irrigation water in the area has been essential since colonizers found it necessary to conserve early spring runoff for lateseason use. A continuous search has been conducted for years by various groups to find the most adequate storage sites.

Individuals, State agencies, and Federal agencies have been active in locating sites. The Utah Water and Power Board and the Utah State Engineer's office have been the principal State agencies and the Bureau of Reclamation and the Soil Conservation Service the more prominent Federal agencies. Some information was recorded and has been preserved of various sites as they were located. The biennial reports of the State Engineer, the 1951 Central Utah project planning report, and various other published and unpublished studies have yielded information on potential storage sites in the ultimate phase area of the Central Utah project. All of the known potential storage sites have been evaluated for this inventory report.

It is apparent from the meager information available that many of the sites located are alternative to each other and would be eliminated in any selected plan. Diversion works and waterways for collection and distribution of storage water will be necessary and must be considered for each storage site. Tabulations have been prepared for the sites selected in this report, and when available the following information has been included: locations, topographic maps, geologic and materials data, areacapacity curves, and cost-capacity curves.

The potential storage sites have been grouped for report purposes according to the natural basin or drainage area in which they are located. Five different areas with the maps for each area are included as follows.

ı.	Uinta Basin drainage area	Drawing No	. 289-418-9
2.	Utah Lake and Great Salt Lake drainage areas	Drawing No	. 289-418-7
	Sevier and San Pitch River drainage areas	Drawing No	289-418-5
4.	Price and San Pitch River drainage areas	Drawing No	. 289-418 -29
5.	Nine-mile drainage area	Drawing No	. 289-418 -29

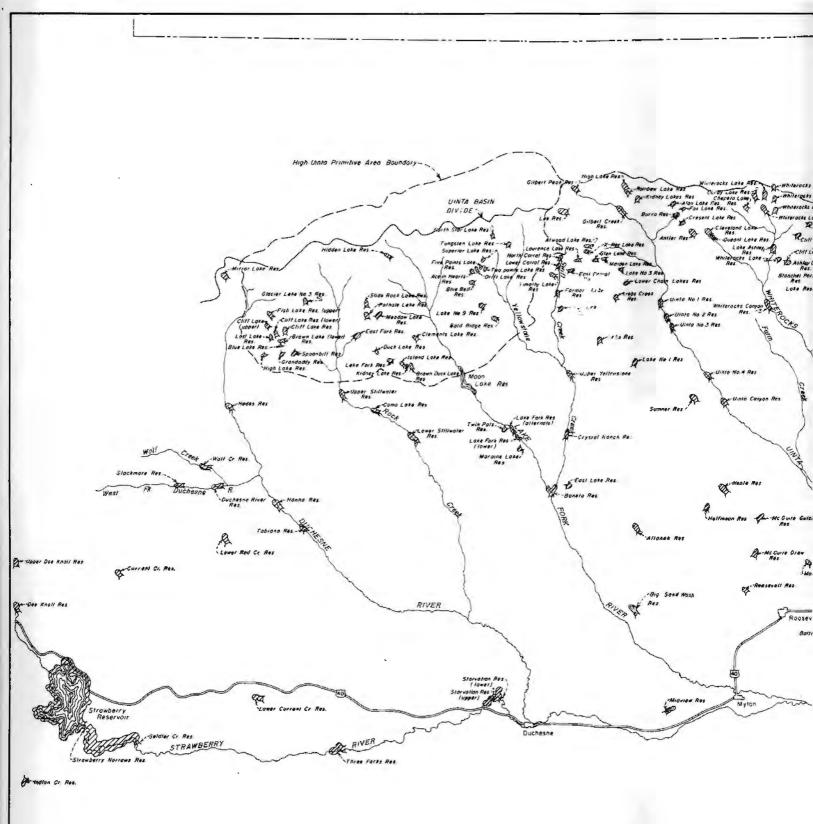
The location of each potential reservoir site selected for further study is shown on the maps on the following pages. Available data for each site are listed in the tabulation following the map on which the site is shown. The potential reservoir sites for this report were selected by field observations or studies of available topographic maps. The available data were classified as follows for each potential site.

Topography

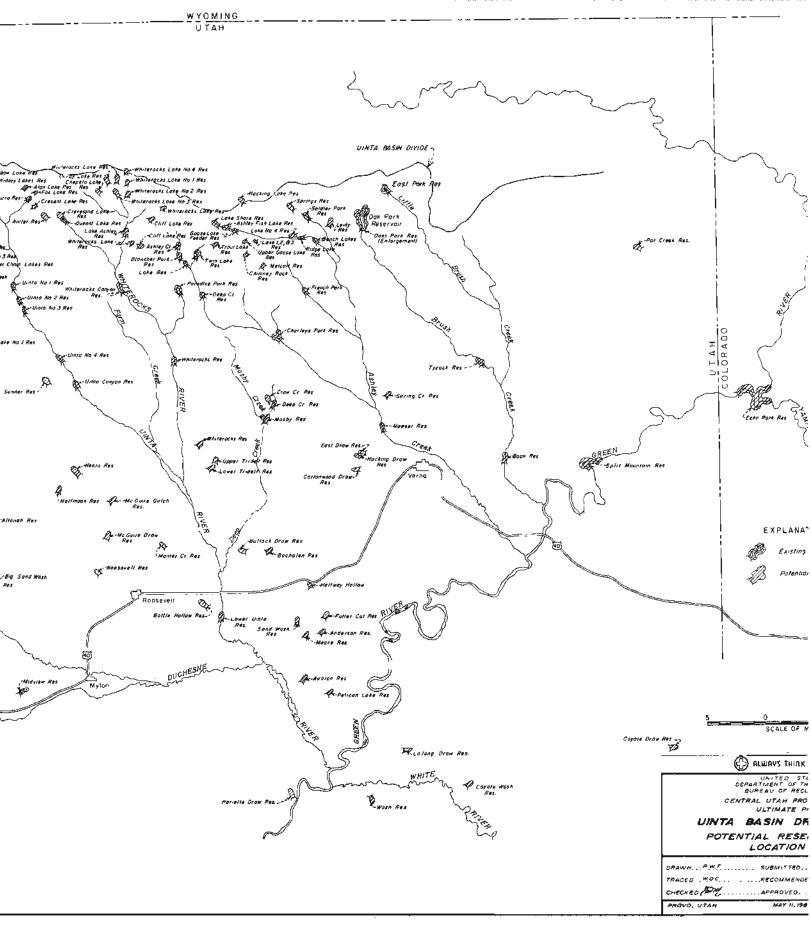
The topography when available for the various sites is shown on quadrangle sheets prepared by the U.S. Geological Survey or topographic maps of the sites prepared by State or Federal agencies. The available maps with the scales to which they are drawn are listed in the tabulations. The quadrangle scales and contour intervals vary with the sheet and include scales of 1 to 125,000, 1 to 52,500, and 1 to 24,000 feet. Contour intervals range from 20 to 200 feet in elevation. Federal or State topographic maps have scales ranging from 1 inch equals 50 feet to 1 inch equals 1,000 feet, and the contour intervals range from 5 to 25 feet of elevation.

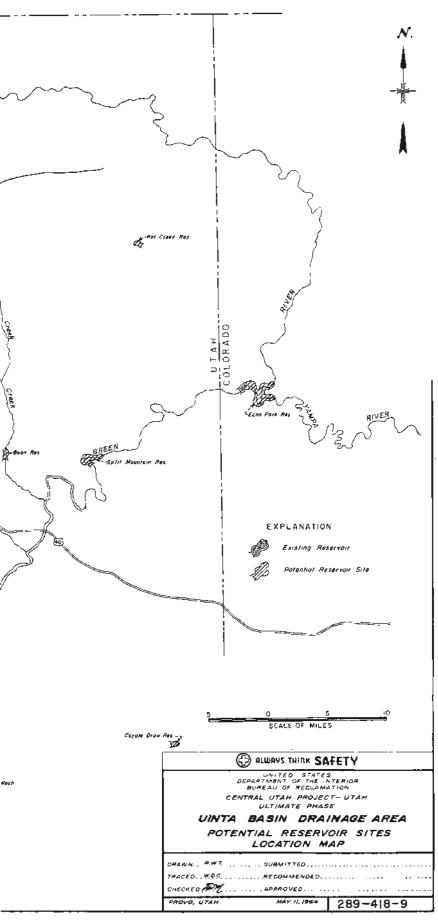
Datum for the dam site elevations varies and is based on approximate elevations taken from quadrangle sheets or elevations determined from Geological Survey level or Geodetic Survey bench marks. Horizontal control has been established usually by local triangulation nets.

Geology and materials


The geologic and materials information shown was obtained either from field observation of the sites or from general knowledge of the area. Detailed investigations have not been completed of these potential storage sites.

Area capacity curves


Area capacity curves were prepared for part of the storage sites from Bureau of Reclamation topographic maps. Some curves were also obtained from State Engineer records.


Future investigations

Design and estimate information presented in this report was obtained from any source available. Data concerning the various storage sites range from fair to inadequate. Additional information would be required to prepare satisfactory estimates. This would be obtained during the plan formulation period.

Je-Sowers Res

		Location;	Cinta Basin Area	
Feature	Drainage	township and range	Topogrephy Scale: CI Drawing No.	Ge
Upper Doe Knoll Dam and Reservoir	On headwaters of the Strawberry River	Sec. 34, TLS, R12W, USBAN	l" = 500', CI = 25', 66PT-418-513	No
Doe Knoll Dam and Reservoir	Upper tributary of the Stravberry River	Sec. 22, 125, R12W, USB&W	1" = 1000', CI = 25', 66PT-418-512, How. 25, 1959	Ko
Indian Creek Dam and Reservoir	On Indian Creek, a tributary to the Strawberry River	Sec. 35, T&S, R62, SLB&M	1" = 100', 66PT-418-95 (Damsite) 1947	
Strawberry Farrows Dam and Reservoir	At Narrows below existing Straw- berry Dem	SW1, Sec. 3, T48, AllW, USB&M		
Soldier Creek Jam and Reservoir	On Strawberry River	Sec. 16, T45, RICK, USB&M	(Reservoir) 1" = 1000', CI = 5', 66-418-19 through 30	6- 6- 2
Currant Creek Dam and Reservoir	On Currant Creek, a tributary to the Strawberry River	Sec. 6, T25, R10₩, USB&4	Dansite: 1" = 100', CI = 5', 66PT-418-133 and 134 1/	
Lower Currant Creek Dam and Reservoir	On Current Creek, a tributary to the Strawberry River	SW2, Sec. 30, T3S, ROW, USB&M		
Lower Red Creck Dam and Reser- voir	On Red Creek, a tributary to the Strawberry River	Sec. 22, TLS, R9W, USB&N	660A-404-27 1940 1" * 100', CI = 5'	No
Three Forks Dam and Reservoir	Strewberry River	Sec. 17, THS, R7W, USB&M		
Starvation Dam and Reservoir (Lover site)	On the Strawberry River	See.27 and 28, T3S, R5W, USB&X	1" = 50', CI = 2', 66PT-418-905 through 920, 942 through 948, and 923 (24 sheets) 660A-418-150 (USOS) 1-12,000	GP CP
Mirror Lake Dam and Reservoir	Mirror Lake to Ducheane River	Sec. 34, T4N, R9W, USB&M		
Hades Dam and Reservoir	On Duchesne River	Sec. 26, T2N, R9W, USB&M		
Stocknore Dam and Reservoir	On the West Fork of the Duchesn e River	Sec. 30, TLN, R9W, USB&M	1" = 500', CI = 10', 66PT-418-16 1943	No
Wolf Creek Dawn and Reservoir	On Wolf Creek, a tributary to the West Fork of the Juchesne River	Sec. 21, TIN, R9W, USB&4	1" = 200', CI = 10', 66-418-121	No
Duchesse River Dem and Reser- volr	On West Fork of the Duchesne River	Sec. 27, TLK, R9W, USBAM		
Hanna Das and Reservoir	On the Duchesne River	See.4, TIS, RGW, USB&M	<pre>1" = 500', CI = 10', 66PT-418-136 and 137; 1" = 50', CI = 5'; 66PT-418-138 through 149, 66-418-165, 169, and 81</pre>	
Tabiona Dam and Reservoir	On the Duchesne River	Sec. 14, T1S, R8W, US2&4	66-418-215, 1" = 500°, CI • 10°	
Upper Cliff Lake Dam and Reser- voir (Lodge Lake)	West Fork Fish Creek to Rock Creek to Duchesne River	Sec. 20, T3N, R8W, UST&M		
Migh Lake Dam and Reservoir (High)	West Fork Fish Creek to Rock Creek to Duchesne River	Sec. 31 and 32, T3N, RGW, USBAM		
Grandaddy Dam and Reservoir (Fish Lake)	Grendaldy Lake to West Fork Rock Creck to Duchesne River	Sec. 33, T3N, ROM, USERN		
Blue Lake Dam and Reservoir	West Fork Rock Creek to Duchesne River	Sec. 28 and 33, T3N, Rôw, USBay		
Cliff Lake (Lover) Dam and Reservoir	Fish Creek to West Fork Rock Creek to Duchesne River	Sec. 21 and 28, T3N, R8W, USBAY		
Lost Lake Dam and Reservoir	West Fork Fish Creek to Duchesne River	Sec. 29, 73R, R6W, USB&M		
Brown Lake Jam and Reservoir (Lower)	West Fork Rock Creek to Duchesne River	Sec. 28, T3N, R8W, USB&4		
Spoonbill Lake Dam and Reservoir	West Fork Rock Creek to Duchesne River	Sec. 34, T3N, R8W, USB&M		
Glacier Lake No. 3 Dam and Reservoir	Glacier Lake to Fish Creek to Rock Creek to Duchesne River	Sec. 11, T3N, R8W, USIMAM		
Fish Lake Dam and Reservoir (Upper)	Fish Creek to Rock Creek to Duchesne River	Sec. 17, T3N, RBW, USD&M		
Slide Rock Lake Dam and Reser- voir	East Fork of Rock Creek to Duchesne River	Sec. 10, T3N, R7N, USBAM		

Potential Reservoir Sites

Viota Basin Area	Geology type	Materials type	Area-capacity curve Draving No.	Cost-capacity curve range Prices as of	
13	None	None	No number 9-23-59	2,600 AF Oct. 1959	USER 30' gund Series - Stravberry Valley
2, Nov. 25, 1959	Rone	Kone	66-418-1174 9-22-59	12,000 to 25,000 AF Jan. 1959	USER 30' Qued Series - Strawberry Valley
e) 1947					USBR 30' Quad Series - Stravberry Valley
			66-418-509		USER 30' guad Series - Strawberry Valley
, 66-418-19 through 5', 66-418-42 and 43. 400', CI = 5',	0-66 0-40 <u>5</u> /	<u>5</u> /	66-418-202	870,000 AF (Feasibility)	5/ See report D&E 113 for references Site to be constructed under Bonneville unit to estimated capacity 65-D-15 30' quad Series - Strawberry Valley
677-418-133 and 134	<u>8</u> /	2/	66-418-530	15,500 AF (Feasibility)	 1/ Currant Creek pipeline and tunnel portal - 66PT-k18-130 and 132 Eorrow Area "A" = 66-k18-628, Borrow Areas "A", "E", "C", "D", and "E" 1" = 1000', CI = 10', 66-k18-1269 66-D-17 Ref. drawing Presibility report on materials for Currant Creek Dam, Feb. 1951; Currant Creek Dam site earth materials investigation, Borrow Area "A" Feb. 1951; Frelininery Geology Report of the Currant Creek Dam and Reservoir sites, G-59, SLC, Utah. For further references see report DAE-123. 30' Quad Series - Strawberry Valley
			66-418-532		OBER 7.5' Quad Series - Fruitland
I = 5'	None	None	66-418-535		(Upper site) 6604-818-22 and 28 - located Sec. 16, TLS, R9W, USBAM by the State Engineer of Utah
					From 22nd Biennial Report of the State Engineer Est. 32,000 AF - \$2,451,838 - Drager, 1920 - USBR - Lover White River
through 920, 942 s) 660A-418-150	см-197 см-81	See Geology	66-4 18 -24 18	162,800 AF Oct. 1962	Site to be constructed under Bonneville unit to estimated capacity USBR 30' Quad Series - Duchesne
					From 22nd Biennial Report of the State Engineer. Feasibility doubtful. 30' Quad Series - Hayden Peek
					From 22nd Biennial Report of the State Engineer 33,770 AF storage - Great Basin Power Company USGS
6 1943	None	None	66-418-526 529		USBR
	None	None	66-418-511		USBR - at coordinates N780,000, E2,159,000
					From 22nd Bienniel Report of the State Engineer Feasibility doubtful
36 and 137; 1" = 50', 49, 66-418-165, 169,			66-404-647 1-6-50	500 to 22,000 AF	USER
	None	None	66-418-531		USER

Prom 22nd Biennial Report of the State Engineer Reconnaissance made 686 AF 30' Quad Series - Hayden Feak

From 22nd Biennial Report of the State Engineer Recompaiesance made and on file in State Engineer's Office and USGS 625 AF 30' Quad Series - Hayden Peak

From 22nd Biennial Report of the State Engineer Reconnaissance made and on file in State Engineer's Office and USOS 382 AF 30' Quad Series - Mayden Peak

From 22nA Biennial Report of State Engineer Reconnaiasance made and on file in State Engineer's office and USOS 257 AF 30' Quad Series - Hayden Peak

From 22nd Biennial Report of the State Engineer Reconnaissance made and on file in State Engineer's Office and USCE 287 AF 30' quad Series - Mayden Peak

From 22nd Biennial Report of the State Engineer Reconnaissance made and on file in State Engineer's Office and USGS 30' Quad Series - Hayden Peak

From 22nd Biennial Report of the State Engineer US68 343 AF 30' Quad Series - Hayden Feak

From 22nd Biennial Report of the State Engineer USOS 1256 AF 30' Quad Series - Esyden Peak

From 22nd Biennial Report of the State Engineer USGS 30' Quad Series - Hayden Peak

 Image: Prom 22nd Biermial Report of the State Engineer USGS 395 AF

 Other sites: Fish Lake (Lower), Sec. 21, T3N, RGW, USBEM

 Fish Lake (Middle), Sec. 16, T3N, RGW, USBEM

 30' quad Series - Hayden Feak

From 22nd Biennial Report of the State Engineer Eat, made and on file in State Engineer's Office and USCS 68 AF 30' Quad Series - Hayden Peak

Central Utah Project Ultimate Phase - Utah

Potential Reservoir Sites

			Potential Reservoir S: Uinta Basin Area	ites			
Feature	Iruinge	Location: township and range	Topography Scals: CI Drawing No.	Gaology type)ésterials type	Area-capacity curve Drawing No.	Cost- curv Frice
Pothole lake Dam and Reservoir	East Fork of Rock Creek to Duchashe River	Sec. 15, T3N, 87V, USRAM					
Meedow Lake Dam and Reservoir	East Fork Rock Creak to Dichesne River	бес. 14, ТУЛ, R7V, USIRAM					
Buck Lake Dam and Reservoir	East Fork to Rock Creak to Disheme River	Зас. 35, ТЗМ, R7W, USEAM					
East Fork Dem and Reservoir	On Rock Creek to Diohesne River	Sec. 21, 27, and 28, T3N, R7W, USBAM	6604-404-36				
Upper Stillwater Dame (Peasibility site)	On Rock Creek tributary to Duchesne River	Sec. 20, 72%, RTV, USBAN	1" = 400', CI = 10', 66-418-120 <u>1</u> /	3/	2/	66-418-504 1-7-49	Feast at 25 DPR Dvg.
Como Laka Dam and Reservoir	Rock Crack to Ducheshe River	5ec.26, TZK, RTV, USBAN					
Lower Stillwater Dam and Reser- voir (Rock Creek Dam	On Rock Creek to Ducheane River	Sec. 5 and 8, TLE, R6W, UBBAM	1" = 50', 56 PT-118-24 through 31, 66-118-203, 1" = 500', CI = 10'			66-418-203	
Sovers Creek Dan and Reservoir	Sowars Creak to Antalope Creak to Duchasne River	6ec. 4, 769, 85¥, USBAN	$1^{n} = 400^{\circ}, \text{ GI} = 5^{\circ}; 1^{n} = 50^{\circ}, \text{ CI} = 2^{\circ}, 6604-404-37$				
Hidden Lake Dem and Reservoir	Lake Fork River to Duchesne River	бес. 24, Т4М, К7М, Царым					
Clements Lake Dan and Reservoir	On Clements Creek a tributary to Lake Form to Durheans River	500.29, 13 7, 864, USBAM				66-418-577	
Lake Fork Dam and Reservoir	Brown Duck Creek to Lake Fork River to Dathesne River	6ec. 1, 72N, 87V, USBAN					
Kidney Lake Dam and Reservoir	On Brown Duck Creek to Lake Fork to Ducheson River	Sec. 6, TZN, RÓW, USIRAM					
Island Lake Dam and Reservoir	On Brown Duck Creek, a tributary of Lake Fork to Dechemon River	600.6, 127, 864, USBAN				66-418-573 Sep. 1931	
Brown Dick Lake Dam and Roser- woir (Lake No. 1)	On Brown Duck Creek, tributary to Lake Fork to Duchesne River	Sec. 5, 12N, RÓW, USBGM				66-418-572 Sep. 1931	
Lake Fork Des and Reservoir (Lower)	Lake Fork to Duchesne River	6ec. 3 and 10, TLN, R5W, USBAM					
Lake Fork Dam and Reservoir (Alternate)	Lake Fork to Dachesna Rivar	Sec. 10, TLW, R5W, USBAM					
Twin Potts Dan and Reservoir	Below Moon Reservoir on Lake Fork Creak to Ducheans River	5ec. 34, T2N, R5V, USBAM				66-418-599 Sep. 19 <u>3</u> 1	
Moraine Lake Dam and Reservoir	Lake Fork to Dachasne River	Sec. 11, TLW, R5W, USBAM					
Bluebell Dam and Reservoir	On a small tributary of the Yellow- stame Greak to Lake Fork to Dachesna	Sec. 31, T40, R5W, USB&M				66-418-574 Sep. 1931	
Ace of Bearts Dam and Reservoir	West Fork Yellowstone Creek to Lake Fork to Duchesne River	Sec. 30, T42, R5V, USBAN					
Drift Lake Dan and Reservoir	A tributary of Yellowstone Creek to Lake Fork to Duchesne River	Sec. 30, T48, 854, USBAN				66-418-576 Sep. 1931	
Superior Lake Dam and Reservoir	Beadwaters of Yellowstone Creak to Laka Fork to Duchesne River	Sec. 20, T4N, R5W, USBAM					
Five Prints Lake Dam and Reser- voir (Lake No. 8)	A tributary to Yellowstone Creak to Laka Fork to Duchesne River	NEL, Sec. 29, TAR, R5W, UEBAM				66-418-575 Sep. 1931	
Two Points Lake Dan and Reser- voir	West Fork Yellowstone Creek to Lake Fork to Duchesne River	Bec. 29, T4N, R5N, USBAM					
Marth Star Lake Dam and Reser- voir	North Star Lake to Yellowstone Creek to Lake Fork Creak to Duchesme River	Sec. 9, THN, R5V, USBAM					
Tungsten Laks Dam and Reservoir	West Fork Xellowstons Creek to Lake Fork Creek to Duchesne River	64c. 15, TAN, R5W, UNEAM					
Laka No. 9 Dam and Reservoir	Yellowstame Creek to Lake Fark River to Duchasne River	Sec. 0, 73M, R5W, USBAM					
Bald Ridge Dam and Reservoir	Småll tributæry to Yellowstone Creek to Lake Fork to Ducheane River	Sec. 16, ТЈИ, В5И, Израм					
Timothy Lake Dam (Lakes Nos. 10, 11, and 12) and Reservoir	Swift Creek, a tributary to Yellowstone River	SB1, Sec. 29, T4N, R4W, USBAN				1/66-418-583 66-418-584 66-418-585	
Fermers Lake Dam and Reservoir (Miller)	Swift Creek, a bributary of Yellowstone Creek	Sec. 5 and 6, Т]Л, R4W, USBAN <u>1</u> /				66-418-579 Sep. 1931 <u>1</u> /	

Vinta Basin Area	_				
	Gealogy type	Materials type	Area-cepacity curva Brawing No.	Cost-capacity curve range Prices as of	Remarks
					From 22nd Biennial Report of State Engineer Recommaissance estimate made and on file in State Engineer's Office and USOS An alternate damaits entitled Pothole Lake (Lower), Sec. 15, TIN, RTW - 74 AF 153 AF 30' quad Series - Kayden Peak
					From 22nd Biennial Report of State Engineer Recommaissance estimate made and on file in State Engineer's Office and USGS goa AP 30' quad Series - Mayden Peak
					From 22nd Bienniel Report of State Engineer USCS 374 AF 30' Quad Series - Kayden Peek
					Prom 22ml Biennial Report of State Englneer Estimated by USOS 557 AJ 30' Quad Series - Mayden Peek
/	2	<u>2</u> /	66-418-504 1-7-49	Femilility est. at 29,500 AF	1/ Remeite topography: 1" = 100', CI * 5', 66FT-418-165 through 169 Aug. 1948
			*-1-49	DPR DC-1's 1961 Dwg. 66-D-16	2/ Freinmary Geological Report of Upper Stillwater Dan site G-52, CUP, Utah, Mar. 1950 For further references see D&F report No. 122, USER 30' Quad Series - Enyden Feak
					From 22nd Biennial Report of State Engineer Feesiality doubtful 30' Quad Series - Hayden Peek
66-418-203, 1" *			66-418-203		USER 30' Quad Séries - Enyden Pouk
2', 6604-404-37					From 22nd Bienniel Report of State Engineer - Est. 465 AF - \$80,832 30' Quad Series - Gilbert Peek
					From 22nd Biennial Report of State Englineer Recommaissance made and on file in State Engineer's Office and USOS Est, 690 AP 30' Quad Series - Hayden Peak
			66-418-577		Reference drawing No. 66-418-192 Feb. 1942 USER 30' Quad Series - Hayden Feak
					From 22nd Riennial Report of State Engineer Est. 468 AF 30' Quad Series - Hayden Peek
					USBR 30' quad Series - Mayden Peak
			66-418-573 Sep. 1931		USBR 30' Quad Series - Mayden Feek
			66-418-572 Sep. 1931		Prom 22nd Biennial Report of State Engineer Plans and specifications filed in State Engineer's Office Surveyed - Est. 468 AF Lake No. 1. (Brown Duck Lake) USER 30° Quad Sentes - Haydan Pask
					From 22nd Elemmial Report of State Engineer Feesibility doubtful. 30' quad Series - Gilbert Feek
					From 22nd Blanmiel Report of State Engineer Feasibility doubtful Est. 650 AF 30' quad Series - Ducheane
			66—418—599 Sep. 1931		USINR 30° Quad Series - Gilbert Paak
					Prom 22nd Biannial Report of State Engineer Plans and specifications filed in State Engineer's Office Est. 670 AF 30' quad Series - Duchesne
			65-4 1 8-574 Sep. 1931		152R 30' gual Saries - Cilbert Peak
					From 22nd Biennial Report of State Engineer - Feasibility Ambuful 30' Quad Series - Gilbert Peak
			66-418-576 Sep. 1931		USER 30' Quad Series - Gilbert Peak
					USER 30' Quad Series - Gilbert Feek
			66-418-575 Sep. 1931		From 22nd Biennial Report of Stete Engineer Recommaissance estimate made and on file in State Engineer's Office, made by USGE Est. 150 AF 30' quad Series - Gilbert Peak
					Prom 22nd Biennial Report of State Engineer Feasibility doubtful 30' Quad Series - Gilbert Feak
					From 22nd Blemmia) Report of State Engineer Fessibility doubtful 30' Quad Series - Gilbert Feak
					From 22nd Blemmiel Report of State Engineer - Presibility doubtful 30' quad Series - Gilbert Peak
					Prom 22nd Biennial Report of State Engineer Reconnaissance astimate made and on file in State Engineer's Office and USGS 300 AF 30' Quad Series - Gilbert Pask
					From 22nd Blennial Report of State Engineer Yeasibility doubtful 30' Quad Series - Gilbert Feak
			1/66-418-583 66-418-584 66-418-585		1/ Alternate sites USUR 30' gund Series - Glibert Peak

Central Utah Project Ultimate Phase - Utah

Potential Reservoir Sites

			Potential Reservoir Si Jinta Desin Area	tes		
Feature	Drainage	Location: township and range	Topography Scale: CI Drawing Mo.	Geology M type	aterials type	Area- C Drev
Corth Carrol Dam and Reservoir	On Swift Creek, a tributary to Yellowstone Creek	SEL, Sec. 21, T4N, R4W, USBLM	1" = 100', CI = 5', 66PT-418-381, Nov. 1955			66-1 Nov.
Lover Carrol Dam and Reservoir	On Swift Creek, a tributary of the Yellowstone Creek	NWŻ, Sec. 28, TWN, RWW, USBAM				66-1 Sep.
East Cerrol Ean and Reservoir	(n Swift Creek, a tributary of the Yellowstone Creek	SEÌ, Sec. 28, T4X, R4W, UBBAM	1" = 100', CI = 5', 66PT-418-380, Nov. 1955			66-1 Seg. 66-1 Жот.
Ceer Lake Dan and Reservoir	On a small tributery of Swift Creek, a tributery of the Yellov- stone Creek	Eà, Sec. 8, 73N, R4W, USBMA				66-1
ipper Yellowstone Dam and Reser- voir	On Yellowstone Creek to Lake Fork to Duchesne River	Sec. 9 and 10, 72N, R4W, USB&M	1" = 400', CI = 10', 66PT-418-185, 186, and 187	<u>Ľ</u> /		66-1
Crystal Ranch Dam and Reservoir (Lover Yellowstone)	On Yellowstone Creek to Lake Fork to Duchesne River	Sec. 4, TIN, RWW, USBRM	1" = 400', 0I = 5', 987PT-418-18 and 19, June 1963 1" = 300', CI = 10', 66-418-59	<u>1</u> /		987- 2/66-1 66-1 Cet.
East Lake Dam and Reservoir	Yellowstone Creek to Lake Fork to Duchesne River	Sec. 28, TIN, R4W, USB&M				
Ecneta Cam and Reservoir	On Lake Fork tributary to Duchesne River	Sec. 32, TlN, R4W, US3&M	1" = 500', СІ = 10', 987PT-418-17, ком. 21, 1962	"Appendices for Uinte Rasin Report" by Charles A. Prescott, 1943 (only general)		Aug. No. ast:
Unalco Dam and Reservoir (Big Sand Wash)	On Big Sand Wash	Sec. 21, 725, R3%, USB&M	66-P-827N, 66-418-826, 66-418-825			66-1 Jan
Leke Lan and Reservoir	West Fork Dry Gulch to Leke Fork River to Duchesne River	Sec. 25, T3N, R4W, USB&M				
Lake No. 1 Dam and Reservoir	Dry Gulch to Lake Fork Siver to Duchesne River	Sec. 4, T2N, R3W, USBAM				
Altonah Dam and Reservoir	Offstream site tributary to Jinta River	Sec. 16, 11S, R3W, USB&M	l" = 500', CI • 10', 66PT-418-34 and 35, Kov. 1942	<u>1</u> /		66-1
Midview Dun and Reservoir	An offstream site of the Duchesne River	Sec. 35 and 36, 238, R3W, USE&M				66-1 JUL)
Lee Dan and Reservoir	On Gilbert Creek, a tributary of Uinta River	Sec. 33, T5N, R4W, USBAM	1" = 500', CI = 10', 66PT-418-170, 1946			
Gilbert Peak Dam and Reservoir	On Gilbert Creek, a tributary of Uinta River	Sec. 22, T5%, R4W, USPAN	1" = 500', CI = 10', 66PT-418-100			66-1
Gilbert Creek Cam and Reser- voir	On Gilbert Creek, a tributary of Uinta River	8 1 , Sec. 32, T5N, R3W, USR&M	1" = 500', CI = 10', 66PT-418-18	Visual observa- tion only <u>l</u> /		66-1 No (
Eigh Jake Dam and Reservoir	Kidney Lakes Basin, a tributary to the Uinta River	Sec. 20, 75N, R Jw , USB&M	1" = 1000', CI = 10', 66PT-418-24	Visual observa- tion in memo. of 9-1-46 & 9-63		66- 4-3
Rainbow Lake Dam and Reservoir	Midney Lakes Basin, a tributary to the Uinta River	Sec. 20, 75N, R3W, USBRM	1" = 1000', CI = 10', 66PT-418-24			66-1
Kidney Lakes Dam and Reservoir (Lakes Nos. 6 and 7 Dam)	Kidney Lakes Rasin, a tributary to the Uinte River	sec. 28, T5N, KJW, USPAM	1" = 1000', CI = 10', 66PT-418-24	Visual observa- tion in memo, of Sep. 1963		Jan No. ess
Alan Lake Dam and Reservoir	Spale Creek to Uinte River	Sec. 25, T5N, R3W, USB&M				
Fox Lake Dam and Reservoir	Headwaters of the Uinta River	Sec. 36, T5M, R3W; Sec. 31, T50, R2W, USBEX 1/	1" = 500', CI = 10', 66PT-418-20			Sep No
Crescent Lake Can and Reservoir	Headwaters of the Uinte River	Sec. 6, T4N., R2W, JOB&4				66- Аца
Burro Dan and Reservoir	On Shale Creek, a tributary to the Uinta River	Sec. 36, T5K, R3W, USB2K	1° = 500', CI = 10', 66PT-418-21	Visual observa- tion in memo. cr 9-1-46		66-
Atwood Lake Dam'and Reservoir	Atwood Basin, a tributary to the Uinta River	Sec. 14, T4N, R4W, USTWM	l" = 500', CI = 10', 66PT-418-101 and 102	Visual observation only $\frac{1}{2}$		66-
X-Ray Lake Dan and Reservoir	Atwood Nasin, a tributary to the Vinta River	Sec. 11, T4N, H4W, USR&M	1" = 500', CI = 10', 66PT-418-101 and 102			66-
Wniden Lake Dam and Reservoir	Atwood Fasin, a tributary to the Uinta River	Sec. 24, T4N, R4W, USBEA:	1" = 500', CI = 10', 66PT-418-102	Visual observa- tion in memo. of Sep. 1963		66- 12-

oir Sites Area

Geology

type

Materials

type

Area-capacity curve Drawing No.

Cost-capacity curve range Prices as of

٠

	<u>type</u> type	Drawing No.	Prices as of	iemerke
		66-418-607 Nov. 11, 1955	;	USDa 30' Qund Series - Gilbert Penk
		66-418-581 Sep. 1931		USER 30' Quad Series - Gilbert Peek
		66-418-587 Sep. 1931 66-418-608 Nov. 11, 1955		USBR 30' Quad Series - Gilbert Peak
		66-418-578		USAR 30' Quad Series - Gilbert Peak
87	<u>1</u> /	66-418-644	18,000 to 137,000 AF Oct. 1963	If "Preliminary Goologic Report of the Yellowstone Dam Site", No. 6-61, Jan. 1950 USBR 30' Quad Series - Gilbert Peak
1963	Ľ/	987-418-26 2/66-418-524 66-418-564 Oct. 1963	30,000 to 60,000 AF Sep. 1963 No. not assigned	J "Neconnaissance Geological Report of Crystal Ranch Nam and Reservoir Site", C-1240, Region 4, SIC, Utub, June 1951 J Lower Yellowstone USRR 30' Quad Series - Oilbert Feak
				From 22nd Biennial Report of State Engineer Frasibility doubtful 30' Guad Series - Duchesne
962	"Appendices for Jinta Dasin Report" by Charles A. Presectt, 1943 (culy general)	Aug. 1963 No. not assigned	10,000 to 20,000 AF July 1963 No not assigned	USER 30' Qued Series - Duchesne
		66-418-636 Jan. 1949	4,000 to 12,000 AF Dec. 1958	USER 30' Quad Series - Duchesne
				From 22nd Riennial Report of State Engineer - Feasibility doubtful 30' Guad Series - Gilbert Peak
				From 22ni Biennial Report of State Englmner 190 AF 30' Quad Series - Gilbert Peak
19년2	1/	66-418-602	12,500 to 24,000 AF July 1958	1/ "Reconnaissance Geological Report, Altonah Dan and Reservoir Sites", C-131, Region 4, SLC, Utak, Sep. 1959 USER 30' Quad Series ~ Duchesce
		66-418-513 July 1938		Existing reservoir - USTR 30' quad Series - Duchesne
				USDR 307 Quad Series - Gilbert Feek
		66-418-512		USEA 30' gund Series - Gilbert Peak
	Visual observa- tion only1/	66-418-503 No date	7,600 to 35,700 AF Oct. 1963	1/ "Geological Reconnaissance of Dem Sites", Sep. 1946, USBR, CUP USBR 30' Quad Series - Cilbert Peak
	Visual observa- tion in memo. of 9-1-46 & 9-63	66-418-50 7 4-30-48	500 to 2,500 AF Oct. 1963	USBR 30' Quad Series - Gilbert Feak
		66-418-951		USBR 30' Quad Series - Gilbert Peak
	Visual observa- tion in memo, of Sep. 1963	Jen. 1964 No. not assigned	800 to 2,450 AF Oct. 1963	USER 30' Quod Series - Gilbert Peak
				From 22nd Biennial Report of State Engineer Fat. 106 AF USOS 30' Quad Series - Gilbert Peak
		Sep. 1963 No number	5,000 to 15,000 AF Apr. 1964	1/ Aris A-A is in Sec. 31, 75%, R2W; Sec. 36, 75%, R3W, USD&M. Aris P-B is in Sec. 30 and 31, 75%, R2W, USB&M. 30' Quad Series - Gilbert Peak
		66-418-591 Aug. 1931		30' Quañ Series - Gilbert Peak
	Visual observa- tion in memo. of 9-1-46	66-418-538	1,600 to 6,050 AF Oct. 1963	USER 30' Quad Serias - Gilbert Peak
	Visual observation only $\underline{1}/$	66-418-537	1,400 to 5,700 AF Oct. 1963	1/ "Weter Supply of the Uints Tesin, Utsh, and Its Utilization", dated 1943. "Lakes and Reservoirs on the Headwaters of the Uinta, White- rocks, and take Fark River", Jintah project, Utah, dated 1931 30' Qued Series - Gilbert Peak
		66-418-547	Jan. 1964 Range 425 to 940 AP (made from curves)	USER 30' quad Series - Gilbert Peak
	Visual observa- tion in memo. of Sep. 1963	66-418-546 12-16-48	500 to 1,460 AF Oct. 1963	USBR 30' Quad Series - Gilbert Penk
				14

Sheet 3 of 7

Remarks

Central Utah Project Ultimate Phase - Utah

Potential Reservoir Sites

			Potential Reservoir S Uinta Basin Area	ites
Feature	Drainage	Location; township and range	Topography Scale: CI Drawing No.	A Geology Materials type type
Laurence Lake Das and Reservoir	Atwood Pasin, a tributary to the Uinta River	Sec. 22, T4N, R4W, USB&K	1" = 500', CI = 10', 66PT-418-101 and 102	
Clenn Lake Dam and Reservoir	Atwood Basin, a tributary to the Uinta River	Sec. 24, ThN, R4W, UST&M	1" = 500", CI = 5", 66PT-418-101 and 102	
Lake No. 3 Dam and Reservoir	Krebs Creek to Uinta River	Sec. 29 and 30, T4N, R3W, USB&M		
Lower Chain Lakes Dam and Reservoir	Chain Lake Dasin, a tributary to the Cinta River	see, 32, T4N, RJW, USBMM	1" = 500', CI = 10', 66PT-418-98 and 99	Treated in a general way1/
Krebs Creek Dam and Reservoir	Chain Lakes Basin, a tributary to the Uinta Hiver	Sac. 6, T3%, R3W, UGB&M	1" = 500', CI = 10', 66PT-418-99	
Winte Mos. 1, 2, 3, and 4 Dem and Reservoir	Dn the dinta River	1/No. 1, Sec. 11, T3N, R3W, USB&M	(Forest Service) 1" = 1000', CI • 25', 660A-418-161	Visual observa- tion only. Mego. of Sep. 1946
Vinte Canyon Jam and Reservoir	On Winta River	Sec. 23, 72%, R2W, USBAM		
Summer Dem and Reservoir (John Star)	John Ster Flat, on Spring Branch to Cottonwood Creek to Duchesne River	Sec. 20, T2X, R2W, U53&M		
Neola Dam and Reservoir (Cottonwood Creek)	Tributary to the Uinta River	Sec. 26, 27, 34, and 35, TLN, R2V. USB&M	1" = 500', CI = 10', 66-418-180; 1" = 400', CI = 5', 987PT-418-22	
Malf Moon Dem and Reservoir (Brown Draw)	Dry Wash 10 miles northwest of Reosevelt	Sec. 4, TIS, R2W, USILM	1" = 500', CI = 10', Nov, 1955, 66-418-178 1/	"Preliminary Report of Geology of Dam Sites in the Uinta Radin & Ashley Valley", June 19432/
McQuire Gulch Dem and Reservoir	Right Fork Cottonwood Creek to Duchesne River	Sec. 7, TLS, RLW, USB&24		
McQuire Draw Dem and Reservoir	Right Fork Sottonwood Creek to Duchesne River	Sec. 30, TLS, RLW, USB&M		
Roosevelt Dam and Reservoir (Hancock Dam)	Offstream site tributary to Winte River	Sec. 7, T2S, RLW, & Sec. 12, T2S, R2W, USB&4	l" = 50', CI = 5', 70-418-5, 660A-404-25	"Prelim. Report of Damsites in the Uinta Basin and Aahley Valley", 1943
Montez Creek Dam and Reservoir	Montez Creek, a tributary to the Winta River	Sec. 36, TIS, RLW, USBEA	1" = 200', CI = 10', 66-418-158	
Cleveland Lake Dam and Reservoir	Tributery to Whiterocks to Uinta River	Sec. 9, T4N, H2W, USBAN	1" = 1000', CI = 10', 66PT-418-22, Aug. 1946	
Queant Lake Dom and Reservoir	Tributary to Whiterocks to Uinta River	Sec. 3/10, 74N, R2W, USP&M	1" # 1000', CI = 10', 66PT-418-22, Aug. 1946	
Antler Dan and Reservoir	West Fork Whiterocks Creek to Uinta River	Sec. 8, 74%, R2W, USTRAM		
Ouray and Elbow Dam and Reser- voir (Lake No. 10 Dam)	Whiterocks River to Uinta River	Sec. 30, 75N, R1W, USB&4		
Whiterocks Lake Nam and Reser- voir	Waiterocks River to Uinte River	Sec. 29, T5%, RLW, USB&X		
Whiterocks Lake Nam and Reser- voir	Whiterocks Lake to Whiterocks River to Duchesne River	Sec. 1, T4X, R1W, USTRAM		
Cliff Lake Dam and Reservoir	Cliff Lake to Whiterocks River to Duchesne River	Sec. 11, T48, R1W, USB&M		
Cliff Lake Dam and Reservoir	Whiterocks River to Dinta River	Sec. 22, T4N, R1W, CSRMM		
lake Ashley fan and Reservoir	Headwaters of the Whiterocks River	Sec. 16 or 21, T4N, RIW, USD&M	Forest Service topography: 1" = 13,500', CI = 25'; Whiterocks Road, 119, June 1956	

ect Jtah

Sites

l			Doch **	Sheet 4 of 7
Geology type	Materiale type	Area-capacity curve Draving No.	Cost-capacity curve range Prices as of	Remarks
		66-418-536	Jan. 1964 90 to 535 AF (made from curves)	USER 30' Quad Series ~ Gilbert Peak
		66-418-544	Range: 760 to 2,240 A ³ Jan. 1964 (mede from curves)	USER 30° Quad Series - Gilbert Peak
				From 22nd Biennial Report of State Engineer Est. 250 AF USGS 30' Quad Series - Gilbert Peak
Treated in a general way1/		70-418-16 Mar. 1964	929 to 3,907 AF Mar. 1964	1/ Memorandum "Geological Reconneissance of Dan Sites", September 1946 Data from Appendix (C), Design and Estimate Special Report, Lakes and Reservoirs on Headwaters of the Uinta, Whiterocks, and Lake Fork Rivers, Uintah project, Utah US38
				30' Quad Series - Gilbert Peak
		70-418-14 1-28-64	500 to 2,500 AF Maar, 1964	USBR 30' Quad Series - Gilbert Peak
Viaual observa- tion only. <i>Nem</i> of Sep. 1946		Oct. 1963 No. not assigned	Dec. 1963 4,000 to 60,000 Ar Prices: Oct. 1963	<pre>1/ Uinta No. 1 - in Sec. 11 Uinta No. 2 - in Sec. 13 Uinta No. 3 - in Sec. 24 Uinta No. 4 - in Sec. 9 and 10, T2N, R2W 30' Quad Series - Gilbert Peak</pre>
				From 22nd Biennial Report of State Engineer Reconnaissance made Records on file at State Engineer's Office and USGS 12,480 AF 30' Quad Series - Gilbert Peak
		66-418-605 Sep. 1931		USER and from 22nd Biennail Report of State Engineer — Reconnaissance made — Records on file at State Engineer's Office and USOS — 2,750 AF 30' Quad Series — Gilbert Feak
		Sep. 1963 No. not assigned	1,000 to 5,000 AF Ort, 1963	USER 30' Quad Series - Duchesne
"Preliminary Re of Geology of D Sites in the U: Basin & Ashley Valley", June 1	em nta	66-418-518, 519 (alternate site) Sep. 1963	1,000 to 4,000 AF Sep. 1963 No. not assigned	 USER topog, Banaite: 1" = 50', 1963, No. 987FP-418-36 through 39 and 61 and 62 Feeder pipe: 1" = 50', 1963, No. 987FT-418-63 and 64 Also "Recommaissance Geology Report of the Balf Moon Dam and Reservoir Sites", GM-77, Oct. 1963 30' Guad Series - Duchesne
				From 22nd Biennial Report of State Engineer Feasibility doubtful 30' Quad Series - Duchesne
				USBR 30' Quad Series - Duchesne
"Prelim. Report Dansites in the Uinta Basin and Ashley Valley", 1943		66-418-560 70-418-6 Oct, 1963	4,000 to 16,000 AF No. not assigned	USBR 30' Quad Series - Duchesne
		66-418-158		USER 30' Quad Series - Vernal
		66-418-545 3-26-48	1,000 to 4,000 AF Oct. 1963	USER 30' Quad Series - Cilbert Peak
		66-418-566 Mar. 1948	1,250 to 7,275 AF Oct. 1963 No. not assigned	USIR 30' Qued Series - Gilbert Feak
			460 AF	From 22nd Biennial Report of State Ingineer — Reconnaissance made Record on file in State Engineer's Office and USCS 30' Quad Series - Gilbert Peuk
				From 22nd Riennial Report of State Engineer 30' Quad Series - Gilbert Feak
				From 22nd Biennial Report of State Engineer Feasibility doubtful 30' Quad Series - Gilbert Peak
				USER 30' guad Series - Marsh Peak
				From 22nd Biennial Report of State Engineer Reconneissance made Records on file in State Engineer's Office 620 AF - 16,650 30' Quad Series - Marsh Peak
				From 22nd Biennial Report of State Engineer Recommaissance made Records on file in State Engineer's Office Est. 550 AF 30' Quad Series - March Feak
				USER 30' Quad Series - Gilbert Peak
				10

Central Utah Project Ultimate Phase - Utah

		Potential Reservoir Sites Uinta Basin Area						
Feature	Drainage	Location: township and range	Topography Scale: CI Draving No.	Geology type	Materials type	Area-car cur Draving		
Whiterocks Lake Dam and Reservoir	Whiterocks River to Uints River	Sec. 22, TWN, RIW, USB&Md/						
Whiterocks Canyon Dam and Reser- voir (Whiterocks River Diver~ sion Dam)	On Whiterocks River	Sec. 8 and 9, T3N, RLW, USB&M	Forest Service map, Whiterocks Road 119, R-4, Utah, Ashley NF, strip 31, 1:13,500, CI = 25'			No mani Apr. 19		
Paradise Park Dam and Reservoir	Readwaters of Whiterocks River	Eģ, Sec. 7, T3N, RIE, USB&M				66-418- Aug. 19		
Whiterocks Dam and Reservoir	On Whiterocks River	Sec. 7, T2N, RIE, USB&M	U.S. Forest Service Whiterocks Road 119, R-4, Utah, Ashley NF, strip 30, 1" = 13,500', CI = 25'			70-418- Ачд. 19		
Whiterocks Dem and Reservoir	On offstream site on a small tributary to the Whiterocks River	Sec. 16, TIN, RIE, USB&M				66-418-		
Upper Tridell Dam and Reservoir	On a tributary to Whiterocks River	Sec. 27, TIN, RIE, USB&M				66-418-		
Lower Tridell Dam and Reservoir	On a tributary to Whiterocks River	Sec. 27, TIN, R1E, USBAM				66- 418 -		
Crow Creek Dam and Reservedr	On Crow Creek, a tributary of Uinta River	Sec. 26, T3S, R19E, SLB&M	1" = 400', CI = 5', 660a-418-23, 1946; 1" = 100', CI = 5', 660A-418-24, 1940			66-41 8-		
Deep Creek Dam and Reservoir	On Deep Creek just below the confluence of Crow Creek	Sec. 26 and 27, T3S, R19E, SLBAM	1" = 100', CI = 10', 660A-101-33, 1912					
Mosby Dam and Reservoir	On Mosby Greek about 12 miles east and 4 miles north of Vernal	Sec. 34, T3S, R19E, SLB8M	1" = 400", CI = 5', 660A-418-21; 1" = 50', CI + 5', 660A-418-29			66-418-		
Bochalen Dam and Reservoir	On Twin Cottonwood Wash, a tribu- tary to the Uinta River	Sec. 27 and 28, T5S, R19E, SLB&M	l" = 400', CI = 5', 66PT-418-382, Nov. 1955	<u>1</u> /		2/66-418- 70-418- Oct. 19		
Bullock Draw Dam and Reservoir	Deep Creek to Uinta River	Sec. 31, TIS, RZE, USBAM						
Lower Uinta Dem and Reservoir	Co Uinta River	Sec. 35, T2S, RlE, USB&M	USER 1" = 500', CI = 10', 70-418-2, Oct. 1963	<u></u> ⊻⁄		70-418- Oct. 19		
Bottle Hallow Dam and Reservoir	Offstream site tributary to Uinta River	Sec. 21, 22, 27, & 28, T2S, RlE, USB&M	l" = 50', CI = 5', 70-418-9, Νον. 21, 1963	Memo to E. O. Larson, 3-31-39, by J. Neil Murdock (only general)		70-418- 66-418- Oct. 19		
Sand Wash Dam and Reservoir	Dry Wash 6 miles east of Fort Duchesne	Sec. 25, T&S, R19E, SLB&M, 6 ml. east of Fort Duchesne	1" = 500", CI ÷ 10", 66-418-104	<u>1</u> /		66-41 8-		
Moore Dam and Reservoir	Red Wash to Duchesne River	Sec. 1, T7S, R19E, SLB&M						
Avalon Dam and Reservoir	On Dry Wash, a tributary to the Duchesne River	Sec. 25 and 26, T3S, R2E, USB&M	1" = 50', CI = 5', 66PT-418-59, June 1942	Appendices for Uinte Basin Report, 1943		70-418- Jan, 19		
Fuller Cut Dam and Reservoir	An offstream site 9.5 miles south- east of Fort Duchesne	Sec. 29, 168, R20E, SLDAM	1" - 50', CI • 5', 66PT-418-49 through 58			66-418-		
Anderson Dam and Reservoir	An offstream site about 9 miles southeast of Fort Duchesne	Sec. 32, T6S, R2OE, SLBAM				66-418-		
Pelican Lake Dan and Reservoir	An offstream site, a tributary to the Duchesne River	Sec. 20, 21, 28, & 29, 175, R20E, SLBAM	USER 1" = 1000', CI = 5', 66PT-418-61, 63, and 65, May 1942	"Revised Winte Basin Report Appendices" No. 123		70-418- Dec. 19		
Halfway Hollow Dam and Reservoir	West Fork of Halfway Hollow, a tributary to Green River	Sec. 7, Tós, R2OE, SlBAM	l" = 100', CI = 5', 66-418-406; 1" = 1000', CI = 10', 66-418-74 and 88	Ŀ		70-418-		
Elanchett Park Dam and Reservoir	Dry Fork, a tributary of Ashley Creek	Sec. 20, 21, 28, & 29, T15, R18E, SLBAM	1" - 1000', CI - 10', 66PT-418-19, July 1946			66-418 Mar. 19		
Lake Ram and Reservoir	Headwater Dry Fork to Lake Fork	Sec. 32, T4N, R1E, USB&M						
Twin Lakes Dam and Reservoir (Lake No. 7)	Dry Fork, a tributary to Ashley Creek	Sec. 21, TLS, R185, SLRAM	1" = 1000', CI = 10', 66PT-418-19			66-418-		
Goose Lake Feeder Dam and Reser- voir (Elbow Lake)	South Fork of Ashley Creek	Sec. 18, TLS, R19E, SL3&*	1" = 400', CI = 5'; 1" = 100', CI = 2', 660A-404-37					

servoir Sites sin Ares

is Area	- · · · · · · · · · · · · · · · ·	Ares-capacity	Cost-capacity	Sheet 5 of 7
	Oeology Materials type type	curve Drawing No.	curve range Prices as of	Remarks
				From 22nd Biennial Report of State Engineer Feasibility doubtful / Other Whiterocks Lake Dam sites located in: No. 1 Sec. 26, 75%, RLW No. 4 Sec. 21, 75%, RLW No. 2 Sec. 33, 75%, RLW No. 5 Sec. 29, 75%, RLW No. 3 Sec. 32, 75%, RLW 30' Quad Series - Gilbort Peak
4, Utah,		No number Apr. 1964	50,000 AP Apr. 1964	USBR 30' gund Series - Gilbert Peak
		66-418-600 Aug. 1931		USBR 30' Quad Series - Marsh Peak
4, Utah,		70-418-1 Aug. 1963	Reconn. est. Sep. 1963 9,500 to 77,000 AF July 1963 prices	UBBR 30' Quad Series - Marsh Peak
		66-418-556		USER 30' Quad Series - Vermal
		66-418-559		USER 30' Quad Series - Vernal
		66-418-558		USBR 30' Quad Series - Vernal
100',		66-418-527		USER 30° Quad Series - Marsh Pesk
				USER 30' Quad Series - Marsh Peak
CI =		66-418-517		USBR 30' Quad Series - Marsh Feak
5	<u>1</u>	2/66-418-612 70-418-8 Oct. 1963	6,220 to 15,700 AP Jan. 1964	 Preliminary Report of the Geology of Dan Sites in the Uinta Basin and Ashley Valley, June 1943 Axis "A", 66-418-612, Sec. 29 and 32, 755, R19E, Nov. 1955 Quad Series - Vernal
				From 22nd Bienniel Report of State Engineer Investigations made and cost estimates prepared Records on file in State Engineer's Office Est. 908 AF - \$128,651 30' Quad Series - Vernal
963	<u>1</u> /	70-418-4 Oct. 1963	Dec. 1963 2,000 to 8,000 AF Price Dec. 1963 No.not assigned	1/ "Preliminary Report of Geology of Dam Sites in the Uinta Basin and Ashley Valley", by G. D. Lassan, June 1943 30' Quad Series - Vernal
	Memo to E. O. Larson, 3-31-39, by J. Neil Murdock (only general)	70-418-13 66-418-603 0ct. 1963	Reconn. est. Dec. 1963 4,000 to 13,000 AF Prices Dec. 1963 No. not assigned	30' Quad Series - Vermal
	<u>1</u>	66-418-555	1,000 to 15,000 AF Oct. 1963	1/ "Preliminary Report of Geology in the Uinta Besin and Ashley Valley", June 1943 30' Quad Series - Vernal
				Prom 22nd Biennial Report of State Engineer Feasibility doubtful 30' Quad Series - Vernal
	Appendices for Ginta Basin Report, 1943	70-418-15 Jan. 1964	466 to 2,006 AF Mer. 1964	USBR 30' Quad Series - Vernal
		65-418-523		USER 30' Quad Series - Vernal
		66-418-514		USER 30' Qued Series - Vernal
, and	"Revised Uinta Basin Report Appendices" No. 123	70-418-12 Dec. 1963	6,500 to 60,500 AF Jan. 1964	USER 30' Quad Series - Vernal
, CI =	<u>1</u> /	70-418-11	20,000 to 57,000 AF Dec. 1963	1/ "Preliminary Report of the Geology of Dam Sites in the Uinta Basin and Ashley Valley", 1943 USBR 30' Quad Series - Vernal
46		66-418-565 Mar. 1948	2,230 to 11,700 AF Oct. 1963	USER 30' Quad Series - Marah Peak
				From 22ni Biennial Report of State Engineer 30' Quad Series - Marsh Feak
		65-418-548	1,750 to 4,550 AP Oct. 1963	USER 30' Quad Series - Marsh Pesk
				From 22nd Biennial Report of the State Engineer Est. 432 AF ~ \$22,227) Two dams \$46,609) Two dams
				30' Quad Series - March Feak

Central Utah Project Ultimate Phase - Utah

.

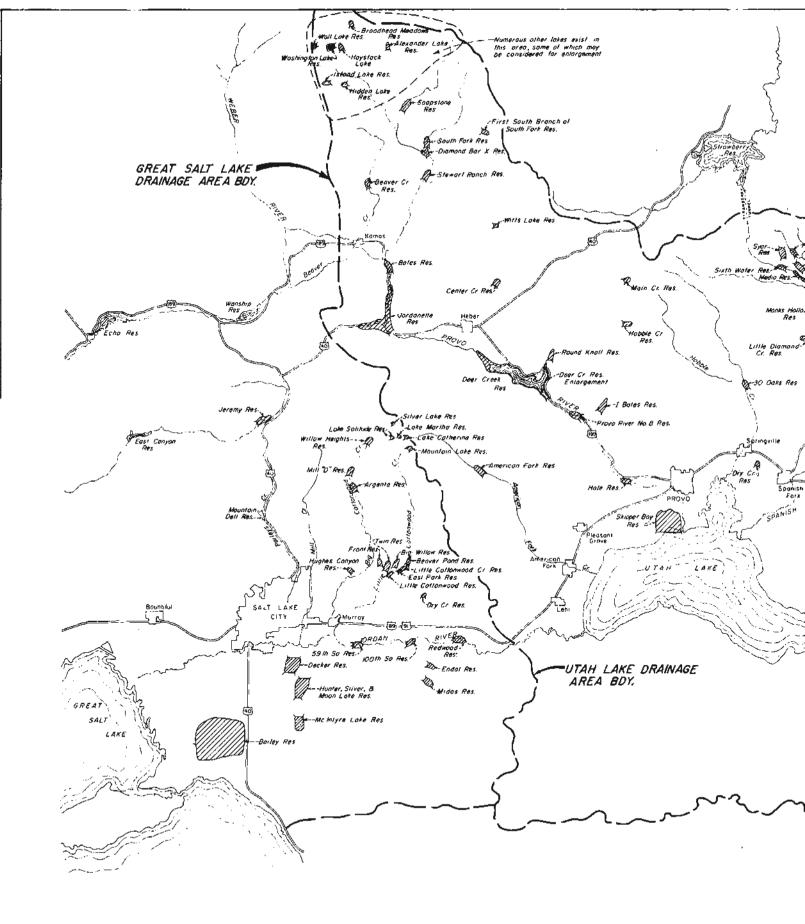
		Potential Reservoir Sites Uinta Basin Area						
Feature	Drainage	Location: township and range	Topography Scale: CI Drawing No.	Geology	Materials type	Area-cop curv Draving		
Trout Lake Dam and Reservoir	Trout Lake to Dry Fork to Ashley Creek	Sec. 24, T1S, R18E, SLEAM						
Deep Creek Dam and Reservoir	Dry Fork to North Fork Ashley Creek	Sec. 10, 125, 218E, SLEAM						
Chimney Rock Dam and Reservoir	Chimney Rock Lake to Split Creek to North Fork Ashley Creek	Sec. 29, TIS, RI9E, SLRAM						
Charleys Park Dam and Reser- voir	North Fork Ashley Creek	Sec. 25, T23, R19E, SLR&M						
Ashley Fish Lake Dam and Reser- voir	South Fork to Ashley Creek	Sec. 7, T15, R19E, SLB&M						
Lake Shore Dam and Reservoir (Dead Lake)	South Fork of Ashley Creek	Sec. 12, TIS, R18E, SLBAM	1" = 200', CI = 5', 660A-404-37					
Upper Goose Lake Dam and Reservoir	South Fork of Ashley Creek	Sec. 17, TIS, R19E, SLB&4	1" = 200', CI = 5', 660A-404-37					
Lake 1, 2, and 3 Dam and Reservoir	Lake to South Fork Ashley Creek	Sec. 16, TLS, R19E, SLB&H						
Metcalf Dam and Reservoir	East Fork to Dry Fork to Ashley Creek	Sec. 27, TLS, R19E, SLR&M						
French Park Dam and Reservoir	Black Canyon to Ashley Creek	Sec. 5, T2S, R2OE, SLBAM						
Hacking Lake Dam and Reservoir	Hacking Lake to Ashley Creek	Sec. 32, TIN, R19E, SLB&M						
Springs Dam and Reservoir	Ashley Creek	Sec. 1, TIS, R19E, SLB&M						
Soldier Park Dam and Reservoir	On Ashley Creek above the conflu- ence of Trout Creek	Sec. 5, T1S, R2OE, SL3&M	1" = 500', 1943, 66PT-418-84			66-418-9		
Ridge Lake Dem and Reservoir	South Fork Ashley Creek	Sec. 18, T1S, R2OE, SLRAM						
Leidy Dam and Reservoir (Trout Creek)	Trout Creek, a tributary to Ashley Creek	Sec. 9 and 10, T15, R2OE, SLD&M	1" = 1000', CI = 10', 66PT-418-15			66-418-9 Jan. 19		
Lake No. 4 Dam and Reservoir	Lake to South Fork Ashley Creek	Sec. 18, TIS, R2OE, SLBAM						
Bench Lakes Dam and Reservoir (Upper and Lover)	South Fork to Ashley Creek	Sec. 20, T1S, R2OE, SLB&M						
Spring Creek Dam and Reservoir	Spring Creek to Ashley Creek	Sec. 20, T3S, R21E, SLB&M						
Maeser Creek Dam	On Ashley Creek	Sec. 5, T4S, R21E, SIFEM	1" = 500', CI = 10', 325PT-418-64 through 69	Unpublished CUP Vernal unit definite plan geological report Dec. 1956	See Geology	325-418- 7-9-48		
East Draw Dam and Reservoir	Offstream site 5 miles west of Vernal, Utah	Sec. 13, T4S, R2OE, SLB&M	1" - 500', CI - 10', 66PT-418-17			325-418-		
Hacking Draw Dam and Reservoir	Offstream site 5 miles west of Vernal	Sec. 13, T45, R2OE, S188M	1" = 500', CI = 10', 66PT-418-17			66-428-9		
Cottonwood Braw Dam and Reser- volr	Offstream site 5 miles northwest of Vernal	Sec. 24, T4S, R2OE, SLRAM	1" - 500', CI - 10', 66PT-418-17			66-418-9		
Osks Park Dam and Reservoir	On Brush Creek, a tributary to the Green River	Sec. 1 and 12, TIS, R2OE, SLBOM	1" = 50', CI = 2', 325-P-22, 9-12-42; 1" = 400', CI = 5', 66PT-418-437, Oct. 1946	<u>1</u> /		325-418-		
Tyzack Dam and Reservoir	On Brush Creek.	Sec. 10, T3S, R22E, SLRMM	1" = 50', CI = 5', 450-P-4 (2 sheets); 1" = 500', CI = 10', 450-400-29 2/	Prelin. geology of Tyzack Dam site. Nov. 1945 Drill & test pit program, Tyzack Dam site, 1945	See Geology	Axis A 66-410 Axis B 66-410 Axis C 66-410		
Boan Dam and Reservoir	On Brush Creek 7 miles east of Vernal	Sec. 13 and 24, T45, R22E, SL904	1" = 500', CI = 5 and 20', 66PT-418-12, Mar. 1943; 1" = 500', CI = 5' and 20', 66-418-176			66-448-9		
Bot Cuss's Box and Becomments	Bet Charle to Games Divers							

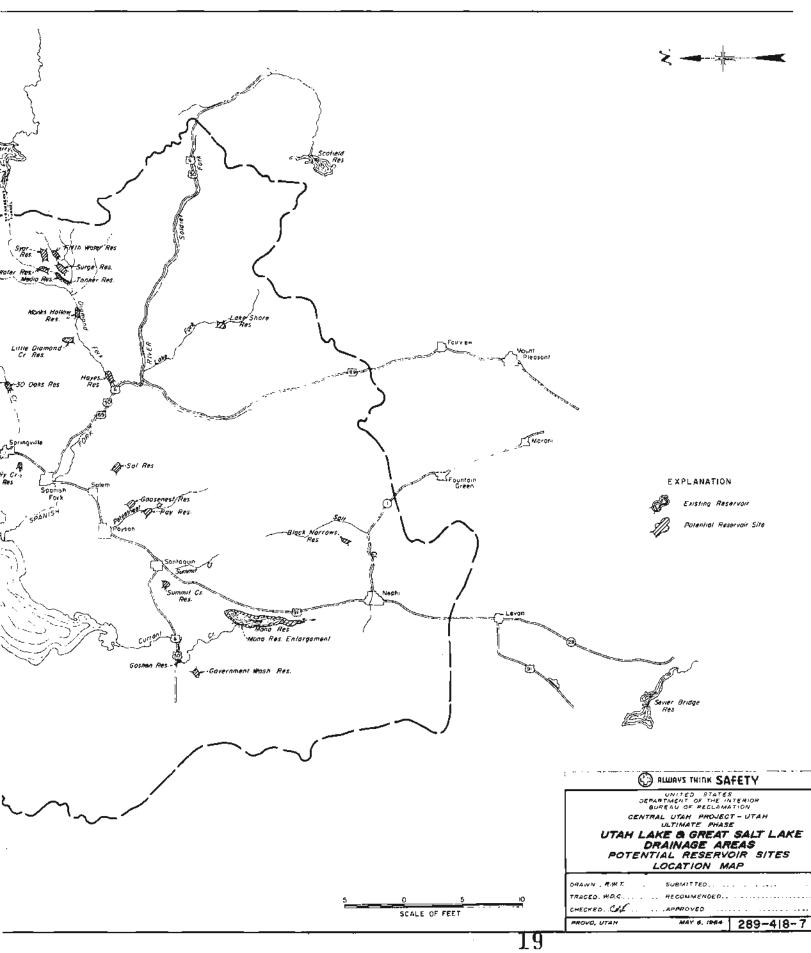
Sec. 24, T1S, R24E, SLBAM

Pot Creek Dam and Reservoir Pot Creek to Green River

.

area	Geology type	Materials type	Area-capacity curve Drawing No.	Cost-capacity curve range Prices as of	Reparks
-	-4 800		to VE	vie 48	From 22nd Biennial Report of State Engineer Feasibility doubtful 30' Quad Series - Marsh Peak
					From 22nd Biennial Report of State Engineer 30' Quad Series - Marén Peak
					From 22nd Biennisl Report of State Engineer 30' Quad Series - Marsh Feak
					From 22od Biennisl Report of State Engineer 30' Quad Series - Marsh feak
					From 22nd Biennial Report of State Engineer Eat. 80 AF USCS 30' Quad Series - Marsh Peak
					From 22nd Biennial Report of State Engineer Estimate made and investi- gation made Records on file in State Engineer's Office Est. 313 AF - \$28,580 30' Quad Series - Marsh Peak
					From 22nd Biennial Report of State Engineer Est. 169 AF - \$17,392 30' Quad Series - Marsh Peak
					From 22nd Biennial Report of State Engineer - Feasibility doubtful 30' guad Series - Marab Poak
					From 22nd Eignniel Report of State Engineer Feasibility doubtful 30' Quad Series - Marah Feak Est. 100 AF
					From 22nd Biennial Report of State Engineer Feasibility doubtful Eat. 520 AF 30' guad Series - Marsh Peak
					Prom 22rd Biennial Report of State Engineer Reconnaissance made and records in State Engineer's Office Est. 234 AF - \$36,402 30' Quad Series - Marsh Pesk
					From 22nd Biennisl Report of State Engineer Feasibility doubtful 30' Quad Series - Mareh Peak
			66-418-561		USER 30' guad Series - Marsh Peak
					From 22nd Biennisl Report of State Engineer Est. 450 AF USGS 30' Quad Series - Marsh Peak
			66-418-570 Jan, 1949	9,000 to 87,000 AF Oct. 1963	USBR 30' Quad Series - Marsh Peak
					Prom 22nd Biennial Report of State Engineer - Feasibility doubtful 30' Quad Series - Marsh Peak
					From 22nd Biennial Report of State Engineer - Feasibility doubtful 30' Quad Series - Marsh Peak
					From 22nd Biennial Report of State Engineer - Feasibility doubtful 30° Quad Series - Marsh Peak
	Unpublished CUP Vernel unit definite plan geological report Dec. 1956	See Geology	325-418-136 7-9-48	25,200 AF Apr. 1948	US⊇R 30' Quad Series - Vernel
			325-418-135		USER 30' Quad Series - Vernal
			66-418-522		USER 30' Quad Series - Vernal
			66-418-534		USEN 30' Quad Series - Vernal
	7		325-418-153	Recon. est. Apr. 1964 10,000 to 16,000 AF Jan. 1964	1/ Unpublished report, CUP, Vernal unit, definite plan geology report, Dec. 1950 USBR 30' Quad Series - Marsh Peak
	Prelim. geology of Tyzack Dam aite. Nov. 1945 Drill & test pit program, Tyzack Dam site, 1945	See Geology	Axis A 66-418-675 Axis B 66-418-1020 Axis C 66-418-1021	4,000 to 15,000 Asl/ Sep. 1963	<pre>1/ Cost capacity curve for Axis "A" 2/ Topography: 450PT-418-32 & 33 Scale 1" = 50', CI = 5' Dansite 450PT-418-34 Scale 1" = 500', CI = 10' Reservoir 3/ Alternate - Upper Big Brush Creek Reservoir Topography: 1" = 500', 1941, No. 669T-418-43 USER</pre>
•6			66-118-528		USBR 30' Quad Series - Jensen
				17	Pot Creek Dam: (Sec. 23 and 24, T15, 524E, 1516 AF Alt. (Sec. 9 and 16, T15, 824F Prom 22nd Bienniel Report of Stata Engineer Built 1910, failed 1927, not rebuilt 5505 AF


Central Utah Project Ultimate Phase - Utah


		Potential Reservoir Sites Uinta Basin Area					
		Location:	Topography			Area	
Feature	Drainage	township end range	Scale: CI Traving No.	Geology type	Materials type	C Tree	
Echo Ferk Dam and Reservoir	Green River 34 miles downstream from the confluence of the Yampa River	Sec. 20 and 29, TTN, R103W, Coloredo Bax	1" = 200', CI = 5', 317FT-418-11 through 16; 1" = 50', CI = 5', 317FT-418-17 through 28			317-	
Split Mountain Dan and Reser- voir	Green River	Sec. 19 and 30, T4S, R24E, SLEAM	1" = 100', CI = 5', 592PT-418-6 through 8, 592-418-6 (1948)				
Pariette Dam and Reservoir	Pariette Draw to Greez River	Sec. 14, T55, RZE, USB&M					
Coyote Draw Dam and Reservoir	Coyote Wash to Green River	Sec. 19 or 20, T&S, R25E, SLB&M					
Coyote Wash Dam and Reservoir	Coyote Wash to White River to Green River	Sec. 5, T95, R222, Slban					
LaLong Draw Dam and Reservoir	LaLong Draw to White River to Green River	Sec. 21, TÖS, R216, SLRAM					
Wash Dam and Reservoir	Waah to White River to Green River	Sec. 12, T95, R20E, SLBAN					
Ashley Creek Dam and Reservoir	Dry Fork to North Fork of Ashley Creek	Sec. 20 or 22, TIS, RIGE, SLBAM					

ject Utsh

8				Sheet 7 of 7
Geology type	Materials	Area-cupacity curve Drawing No.	Cost-capacity curve range Prices as of	Reverke
		317-418-4		USER 1 = 62,500 Topography of Dinosaur National Monwhent
				VSER
				Prom 22nd Biennial Report of State Engineer - Plans and specification filed in State Engineer's Office Est. 466 AF 30' Quad Series - Vermal
				From 22nd Riemmial Report of State Engineer
				From 22nd Bienniel Report of State Engineer
				From 22nd Biennial Report of State Engineer Pessibility doubtful 30' Quad Series - Vernal
				From 22nd Biennial Report of Stata Engineer 30° Qued Series - Vernal

From 22nd Biennial Report of State Engineer Feasibility doubtful 30' Quad Series - Marsh Peak

Central Utah project Ultimate Phase - Utah

Potential reservoir sites

			Potential reserve Utab Lake draineg		
Feature	Drainage	Location: township and range	Topography Scale: CI Drawing No.	Geology type	Materials type
Black Marrows Dam and Reser- voir	Pole Creek to Salt Creek to Currant Creek to Utab Lake	Sec. 28, T126, R2E, S12001	1" = 200', CI = 5', 660A-418-1, 1939		
Government Wash Dawn and Reser- voir	(Kimball Creek) Government Wash to Currant Creek to Utah Lake	Sec. 21, T105, R1W, SLRAN			
Coshen Dim and Reservoir	Currant Groek on site of exist- ing dam	MW ¹ , Sec. 15, T108, RLW, SLREM			
Mona Dug and Reservoir	On Currant Creek at the site of the existing dam	Sec. 7, TILS, RIE, SLY&M	1" = 50', СІ = 1' mml 5', 66FT-418-692, 693, алд 695, Jan. 1962	Feasibility Geologic Report No. C-177, Region 4, SIC, Utah, Aug 1962	See Geology
Summit Creek Dam and Reservoir	On Summit Creek, a tributary to Santaquin Creek	Sec. 2, 3, 10, and 11, 1105, Rie, Sinam	1" = 400°, CI = 2°, 66-418-1496; 1" = 400°, CI = 2°, 66PT-418-690		
Pay Dam and Reservoir	On Peteetneet Creek, a tributary to Utab Lake	Sec. 34, 195, R2E, SlE&X	1" = 400', CI = 10', 66PT-418-687 and 307		
Goosenest Lam and Reservoir	At the mouth of Dear Canyon, a tributary to Utah Lake	Sec. 22, 23, 26, and 27, 195, R2E, SLB&M	1" = 50', C1 = 5', 66-418-310; 1" = 400', CI = 10', 66PT-b18-304 through 307		
Sal Dam and Reservoir	licar the mouth of Water Canyon, a tributary to Utah Lake	Sec. 17 and 18, 198, R3E, SLIMA	$1^{\prime\prime}$ = 400', CI = 10', 66P7-418-301 through 304		
Symr Dam and Reservoir	Summit of Rays Valley Road between Fifth and Sixth Water, a tributary to Diemond Fork	Sec. 17 and 18, 785, Rór, SLWE:	1" = 50', CI = 2', 66PT-418-662 through 668, Sept. 1961	"Pensibility Geologic Negart for Symr Dan & Fowerplant Site" G-174, Region 4, SLC, Utah, Jan. 1962	See Geology
Sixth Water Dam and Reservoir	On Sixth Water Creek, a tributary to Diamond Fork	Sec. 13, T8S, R5E, SLUXM	1" = 50', Get. 1961, 66PT-418-673 through 679, 66-418-1476	"Feasibility Geologic Report Sixth Water Dam & Powerplant Sike G-173, Region 4, SLC, Utah, Jan. 1952	See Geology
Surge Reservoir to Forks Power- plant	Offstream site between Fifth and Sixth Water, a tributary to Diamond Fork	ME_{u}^{1} , Sec. 25 and SW_{u}^{2} Sec. 19, T&S, R5 and 6E, Slight	l" • 200', CI • 5', 66PT-418-107		
Media Dam and Reservoir	On Sixth Water, a tributary to Diamond Fork	Sec. 26, T85, R55, SLEAM	1" = 400', CI = 10', 66-418-1473		
Tauner Dan and Reservoir	On Sixth Water, a tributary of Diamond Fork	Sec. 26, TES, R5C, SLD&M	1" = 400', CI = 10', 66-418-1473		
Fifth Water Dam and Reservoir	On Fifth Water Creek, a tribu- tary to Liamond Fork	Sec. 19, 765, 868, SlB&:	Reservedr: 1" = 400', CI = 10', 66-418-1285 and 12862/; Dom: 1" = 50', CI = 5', 667T-418-680 through 683 and 689	<u>1</u> /	See Geology
Monks Hollow Dam and Meservoir	On Diamand Fork	Sec. 32, T&S, R5E, SLREM	State of Utah topography, 1940, 1" = 50', CI = 5', 66GA-418-15 (3 sheets) $\frac{1}{2}$	2/	<u>2</u> /
Little Diamond Creek Dan and Reservoir	On Little Diamond Creek	Sec. 1 and 36, 78 and 98, R4E, SLARM	660A-418-30 (1940), 1" = 50', CI = 5', (8 sheets); 660A-418-31 (1940), 1" = 400', CI = 5'; 660A-404-15 and 16, 1" = 400', CI = 5'2/		
Hayes Dam and Reservoir	On Dismond Fork	Sec. 16 and 17, 795, R45, SIR&A	$1^{\circ} = 50^{\circ}$, CI = 5', 66PT-418-349 through 355, 526, and 688 $\frac{1}{2}$	2/	<u>2</u> /
Lake Shore Dam and Reservoir	Lake Fork to Soldier Creek to Spanish Fork River	Sec. 32, T105, R5E, SLR&:			
30 Ceks Dam and Reservoir (Hobble Creek Dam)	Hobble Creek to Utah Lake	Sec. 32, I7S, R4E, SLP&4			
Dry Creek Dow and Reservoir (Dig Hollow)	tig Hollow to Dry Creek to Uten Lake	Sec. 8, TOS, R3E, SLRM:			
Heystack Lake No. 2 Dam and Reservoir	Haystack Lake to Frovo River	Sec. 7, T25, R9E, SLB&1;			
Sroadhead Meadows Dam and Reservoir	Froachead Weadows to Provo River	Sec. 16, T2S, R9E, SIR&4			

t M

ltes sin

sin				Sheet 1 of 2
Geology type	Materials type	Area-capacity curve <u>prawing No.</u>	Cost-capacity curve range Prices as of	Remarks
		66-418-646 Oct. 1949		From 22nd Pionnial Report of State Engineer July 1, 1938 to June 30, 1940 Investigations mude and cost estimate prepared Records on file in State Engineer's Office Sat. 6,275 AF - \$1,115,358 1,746 AF - \$ 397,002 15' Quad Series - Moroni
				From 22nd Fiennial Report of State Engineer July 1, 1938 to June 30, 1940 Investigation made and cost estimate prepared Records on file in State Engineer's Office Est. 318 AF - \$90,389 15' Quad Series - Santaquin
l		66-418-676 Jan. 1953 .		USBA 15' Quad Series - Santaquin
easibility sologic Report o. G-177, egion 4, SIC, tah, Aug 1962	See Gealogy	66-418-1599 Mar. 3,1962	Feasibility design at 55,000 AF	USER Feasibility design draving No. 66-D-35, 1962 15' Quad Series - Santaguin
				USDA 15' guad Cerics - Santaguin
		No number Jan, 1962	6,000 to 22,000 AF Jag. 1962	USER 15' quad Series - Santaquin Poak
		66-418-1435 Nov. 1961	270 to 1,730 AF July 1958	USER 7.5' Quad Series - Spanish Fork
		66-418-1436 Nev. 1961		Coordinates of dam axis N. 620,000 and E. 1,962,000 USDA
	_			7.5' Quad Series - Spanish Fork Feak
Fessibility cologic Report or Syar Dem & overplant Site" -174, Region 4, LC, Uteh, Jan. 962	See Geology	66-418-1433 Nov. 16, 1961	Fessibility design <u>l</u> / at 930 AF	1/ Feasibility design unwwing No. 66-0-26 30' Quad Series - Strawberry Valley
Vensibility sologic Report twen Water Dam Powerplant Site" -173, Region 4, LC, Utah, Jan. 962	See Geology	66-416-1495 Sep.27, 1961	Feasibility design at 1,020 AF	UE12 30' Quad Series - Stravberry Valley
				USDA 30' Quad Series - Stravberry Valley
		No number Dec. 1962	1,000 AF	USER 30' Quad Series - Strawberry Valley
		66-418-645 Mar, 1949		USDR 30' Quad Series - Stravberry Valley
IJ	See Geology	No number Sep. 1961	2,500 AF 1961 est.	 1/ Fensibility Geology Report 'Fifth Water Dan and Powerplant Site," G-175 Region 4, SLC, Uten, Jan. 1962 2/ Reservoir topography prepared by the U. S. Forest Service USBR
2/	2/	66-418-500		301 Quad Series - Strowberry Valley
5/	5/	May 1946		1/ Reservoir topography: 1" = 400', CI = 5', 660A-418-16 (2 sheets) 2/ Monks Hollow Wam site, drill and test pit progress, 1946 USRS 30' Quad Series - Strewberry Valley
		66-418-520 (Not in files)		USTR 1/ Topography by State Engineer 30' Quad Series - Strawberry Valley
<u>s/</u>	2/	66-418-680 Mar. 1953	Feasibility design at 51,500 AF Design drawing No. 66-D-24	Little Diamond Creek Reservoir 51tc, 660A-404-31 (30' Quad Series - Strawberry Valley) 2/ "Earth Materials Investigation Data and Results of Laboratory Tests of
				Materials for the Proposed Mayes Jam", CPF, GP-52, April 1962 From 22nd Biennial Report of State Engineer – July 1, 1938, to June 30, 1940 Peasibility doubtful
		66-416-674 Har. 1953	10,000 to B0,000 AF 3-27-53	From 22nd Riennial Report of State Engineer July 1, 1938, to June 30, 1940 Records on file in State Engineer's Office and USCS Reconnaissance made 7.5' Quad Series - Springville
				From 22nd Diennial Report of State Engineer — July 1, 1938, to June 30,1944 Flans and specifications filed in State Regimeer's Office 7.5' Quad Series - Frovo
				Alternate: Haystack Luke No. 1, Sec. 12, T25, R0F, SLPA: From 22nd filennial Report of State Ingineer – July 1, 1938, to June 30,1940 Peasibility doubtful 30' Quad Series - Hayden Feak
			20	From 22nd Biennial Report of State Engineer — July 1, 1938, to June 30,1940 Feasibility doubtful 30' Quad Series - Rayden Fock

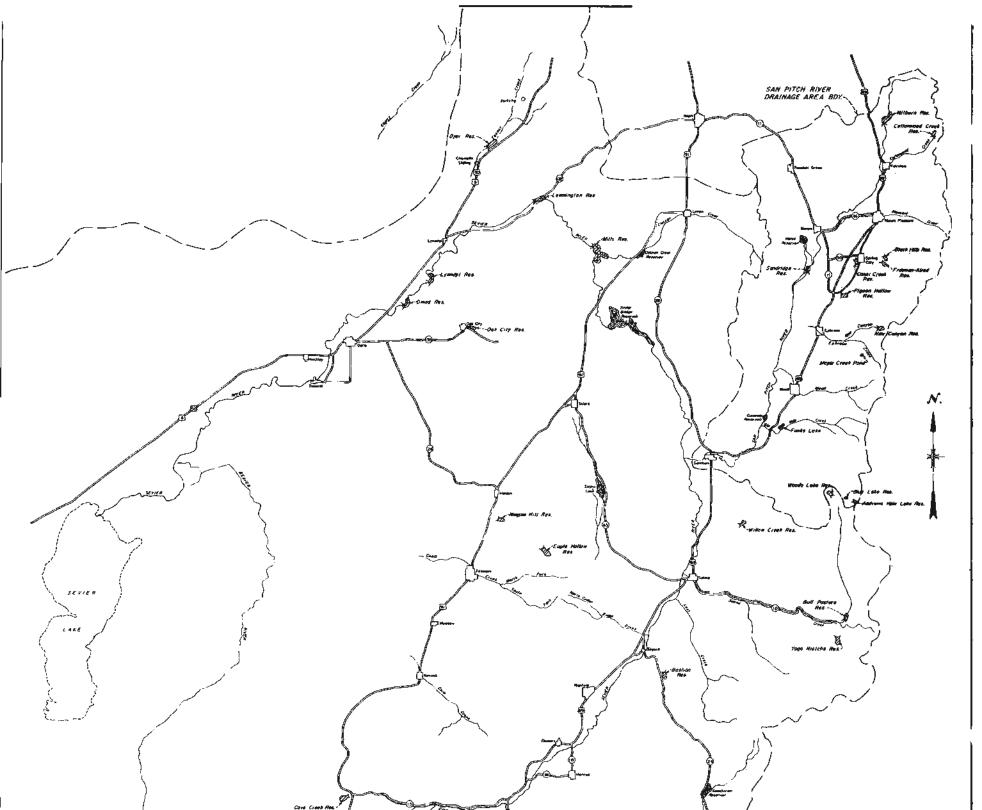
Central Utah project Ultimate Phase - Utah

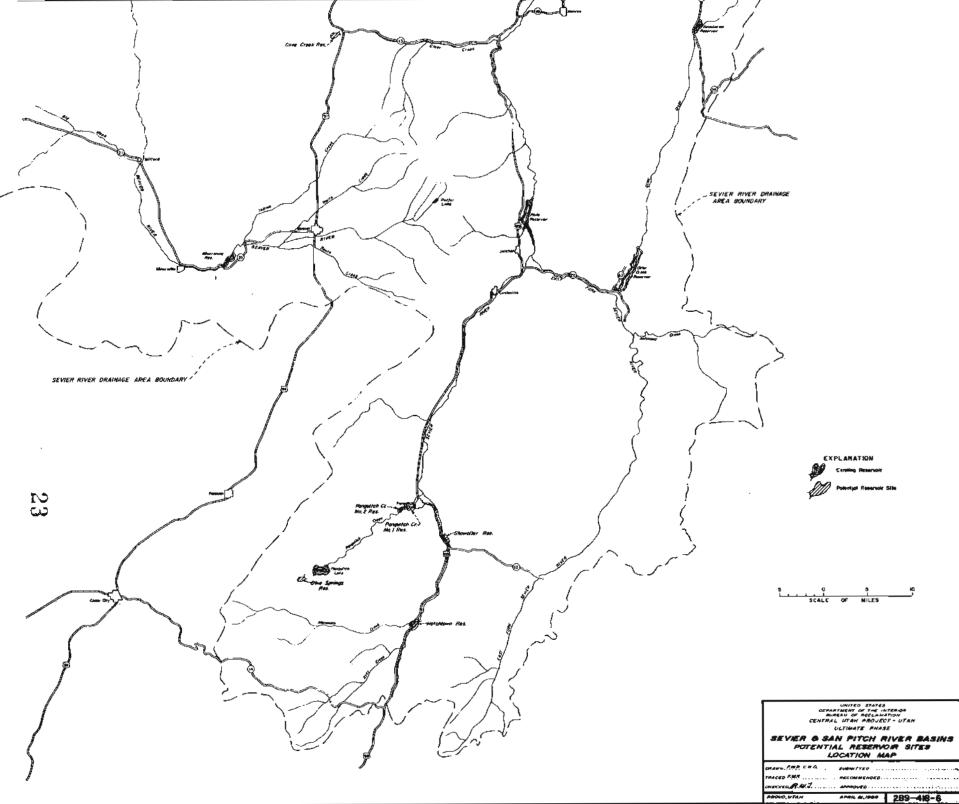
Potential reservoir sites

		Potential reservoir sites Utan Lake drainage besin					
Feature	Drainage	Location: township and range	Topography Scale: CI Drawing No.	Geology type	Materials type		
Island Lake Dam and Reservoir (North Fork Lake No. 4)	Island Lake to North Fork to Provo River	Sec. 3, T2S, RÖE, SLE&T					
Hidden Lake Dam and Reservoir	Hidden Lake to Provo River	Sec. 10 and 15, 72S, R8E, SLB&M					
Alexander Lake Dam and Reser- voir	Alexander Lake to Provo River	Sec. 31, 725, R9E, SLEAM					
Sompstone Dam and Reservoir	On Provo River	Sec. 5, T3S, R8E, SLBM1	1" = 400', CI = 5', 244-408-215 and 216, February 1952				
First South Dranch of South Fork Dam and Reservoir	Campbell Hollow to South Fork to Provo River	Sec. 12, T4S, R7E, S1B&M					
South Fork Jan and Reservoir	On South Fork of Provo River	Sec. 14, 735, R7E, SLEW4	Quad sheet, 30' series, 1:125,000				
Diamond Sar X Dam and Reservoir	On Frovo River	Sec. 15, T3S, R7E, SLBM4	1° ≏ Щов', СI « 5', 244-408-217, Реъ. 1952				
Stewart Ranch Dam and Reservoir (Trin Pine)	on Provo River	584, 500. 17, T38, R7E, SLR&X	1" = 1000', CI = 10', 66PT-418-172; 1" = 200', 66PT-418-173; 1" = 400', CI = 5', 244-408-52, Jen. 1957				
Beaver Creek Dat and Reservoir	On Beaver Creek, a tributary to the Provo River	Sec. 19, T2S, R7E, SLB&M	Quad sheet, 30' series, 1 = 125,000				
Bates Dam and Reservoir	On Frovo River	5ec. 36, T25, R5E, SLR&4	1" = 400', CI = 5', 66PT-418-194 and 195, Aug. 1950±/	Geology report2/	See Geology		
Jordanelle Dem and Reservoir	On Frovo River	Sec. 31, T28, R52, SLB&M	Demaite: 1" = 100', CI = 5', 66-418-821 through 894; Reservoir: 1" = 400', CI = 5', 66-418-2276, 2317, 2321, 2331, 2349	СЖ+73 СК-74 Dr11 1ора	ди ~72		
Witts Lake Gam and Reservoir	Lake Creek to Provo River	Sec. 10, тыс, Яба, Slaw					
Center Creek Dam and Reservoir	On Center Creek, tributary to Frovo River	Sec. 14, T45, R58, SLBAM	1" = 500", CI = 10", 662T-418-511, Jan. 6, 1950				
Deer Creek Reservoir Enlarge- ment	On Provo River	Sec. 5 and 6, T3S, R4E, SIBAM	1" = 200', CI - 5' ¹ /	See final con- struction report for existing dam	See final construction report for existing dam		
Main Creek Den and Reservoir	Main Creek to Round Valley Creek to Provo River	Sec. 11, TÓS, R5E, SLB&A:			_		
Hobble Creek Dam and Reservoir	On Little Hobble Greek, a tribu- tary to Provo River	Sec. 7, TÓS, 85E, SLB&X	1'' = 50', CI = 5', 66PT-418-189 and 190, 1950	"Hobble Creek Res. Geologic Investi- gations"	See Geology		
Kound Knoll Dam and Reservoir	Tributery to Provo River	Sec. 4, T95, R4E, SLB&M	1" = 200', CI = 5', 1.2R-36 and 37				
Provo River No. 8 Dam and Reservoir	Provo River	Sec. 24, T55, R3E, SLB&M					
I. Bates Dam and Reservoir	South Fork to Provo River	Sec. 36, T5S, R3E, SLE&4	· · ·				
Nale Dam and Reservoir	On Provo River	Sec. 12, 70S, R2E, SLBAM	1° • 50', CI « 1', 66PT-418-742 through 745				
Skipper Bay Dike	On Utah Leke north of Provo Boat Herbor	Sec. 28, 33, and 34, T6S, R2E; Sec. 3, 4, end 5, T7S, R2E, SLEAM	USCS Quad Sheet, 72' series, 1 = 24,000	<u>1</u> /	<u>1</u> /		
Howe Canyon Wesh Dam and Reservoir	Howe Canyron Wash to Utah Lake	Sec. 1 and 2, T ^E S, R3W, SLBAM					
American Fork Cam and Reservoir	American Fork Creek to Jordan River	Sec. 7, T4S, R3E, SLBM4					
Well Lake Dam and Reservoir	Wall Lake to Provo River	Sec. 30 end 31, TLS, R9E, SLBAM					
Washington Lake Dam and Reser- voir	Washington lake to Provo River	sec, 6, 129, R9E, SLB&M					

Geology type	Materials type	Arca-capacity curve Drawing No.	Cost-capacity curve range Frices as of	Remarks
	-1-			From 22nd Biennial Report of State Engineer July 1, 1936, to June 30, 1940 30' Quad Series - Coalville
				From Zend Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Feasibility doubtful 30' Quad Series - Coalville
				From 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 – Feasibility doubtful 30' Quad Series - Hayden Peak
		No number 11-1-57	12,000 AP Oct. 1957	USIR 30' Quad Series - Comiville
				From 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Feasibility doubtful 30' Quad Series - Strawberry Valley
		No mumber 11-4-57	12,000 AF Oct. 1957	USER 30' Quad Series - Coalville
		No number 12-6-57	12,000 AF Oct. 1957	USER 30' Quad Series - Coalville
		65-418-567 2-17-49 No number 10-31-57	12,000 AF Oct. 1957	USBR 30' Quad Series - Comlville
		No number 11-4-57	12,000 AF Oct. 1957	USER An alternate site entitled Lower Benver Creek Reservoir 30' guad Series - Coalville
Geology report ²	See Gealogy	66-418-653 1-10-52	30,000 to 65,000 AF Prices: Oct.1958 3/	 1/ Bates Dam site: 1" = 50', CI = 5', July 1950, 66PT-418-199 through 209 2/ Reconnaissance Geological Report of the Bates Dam and Reservoir site, G-76, Region 4, Salt Lake City, Utah, January 1951. 3/ Also Upper Provo-Upper Weber complex curve, June 7, 1962; August 1959 cost study for 150,000 AF 30' Quad Series - Coolville
GH-73 GM-74 Drill 1060	Gм-72	66-418-2357	170,000 AF Feasibility estimate	USRN 7.5' Quad Series - Heber
				Prom 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Plans and specifications filed in State Engineer's Office 30' Quad Series - Stravberry Valley
		66-418-1173 9-18-59	9,000 AF	USER 30° qued Series - Stravberry Valley
See final con- struction report for existing dam	See final construction report for existing dam	66-418-1748	150,000 AF Aug. 1959	1/ 66PT-118-533 through 541, 710, 746 through 760, 770, 860, and 862 through 872 USBR 7.5' Quad Series - Aspen Grove
				From 22nd Biennial Report of State Engineer July 1, 1938 to June 30, 1940 (State Engineer) Reservoir site infeasible 30' guad Series - Stravberry Valley
"Hobble Creek Res. Geologic Investi- gations"	See Geology	66-418-571 May 1950	200 to 1,400 AF Prices 1957 No mumbers	USBR 30' Quad Series - Strawberry Valley
		66-418-568	1,400 to 14,000 AF Oct. 1958	USER Drawing No. 66-418-1106 shows damaite in sec. 4 30' Quad Series - Strawberry Valley
				From 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Surveyed, no cost estimate Records in USBR, Larson, 1938 7.5' Quad Series - Eridal Veil Falls
				From 22nd Biennial Report of State Engineer – July 1, 1938, to June 30, 1940 – Feasibility doubtru 7.5° Qued Series - Bridal Veil Falla
		66-418-1821 Aug. 1962	60 AF Feasibility design	USBR 7.5' Quad Series - Orem
1/	1/	66-418-1038 <u>2</u> /	25,000 AF Jan. 1959	1/ Provo Bay Geological Reports are available on a site south of Provo Bost Harbor 2/ Area-capacity curves for alternate sites - 66-518-1042, 1043- and 1042 7.51 Quad Series - Grea and Provo
				From 22nd Biennial Report of State Engineer – July 1, 1938, to June 30, 1940 – Feasibility doubthul 7.5' Quad Series - Five-Mile Pass
				From 22nd Biennial Report of State Engineer July 1, 1936 to June 30, 1940 Recommaissance made Records on file in State Engineer's Office 7.5' Quad Series - Timpanogos Cave
				Existing lake - Kemorandum: "Upper Provo River Lakes Inspection - Central Utah Project", dated Oct. 10, 1962, to Project Manager from Chief, Engin- eering Division 30' Quad Scries - Hayden Feak
			21	Existing lake - Memorandum: "Upper Provo River Lakes Inspection - Central Utah Project", dated Oct. 10, 1962, to Project Manager from Chief, Engin- erring Division 30' quad Series - Hayden Peak

Central Utah project Ultimate phase - Utah


Ultimate	e phase - 1	Jtah
Potential	reservoir	sites


				Potential reservoir sites Great Salt Lake Drainage Basin			
Feature	Drainage	Location; township and range	Topography Scale: CI Draving No.	Geology type	Materisls type	Area-c ci Draw	
Mountain Lake Dam and Reservoir	Little Cottonwood Creek to Jordan River	Sec. 9, ?3S, R3E, SLB&4					
Beaver Pord Dam and Reservoir	On Little Cottonwood Greek to Jordan River	Sec. 11, T3S, R1E, SLAAM	1" = 50', CI = 5', 1941, 660A-408-51 (10 sheets); 1" = 200', CI = 5', 1941, 660A-408-52 (2 sizets)⊥/			66-41 7-14-	
Little Cottonwood Creek Dam and Reservoir	On Little Cottonwood Creek	Sec. 2, T3S, R1E, SLB&M	USOS Quad Sheet, 7.5' scrics, 1 = 24,000			66-4) 7-25-	
East Park Dam and Reservoir	On Little Cottonwood Creek	Sec. 2, T39, R1E, SLB&M	1" = 200', 660A-418-43, 1916				
Little Cottonwood Dam and Reser- voir (Pepper Bridge)	Little Cottonwood Creek to Jordan River	Sec. 34, T2S, R1E, SLPA4					
Front Dam and Reservoir	Tributary to Great Salt Lake	Sec. 35 and 36, 725, R1E, SIB&ML/	1" = 100', CI = 5', 66PT-418-196, 197, and 198			66-4; 8-8-;	
Big Willow Dam and Reservoir	Little Willow Creek to Little Cottonwood Creek to Jordan River	Sec. 35, T2S, RLE, Sleam					
Dry Creek Dam and Reservoir	On Dry Creek, tributary to Jordan River	Sec. 16, T3S, RLE, SLB&M	USDS Quad Sheet, 7.5' meries, 1 = 24,000			66-4: 7-25-	
Lake Catherine Dam and Reser- voir	Big Cottonwood Creek to Jordan River	Sec. 3, T3S, R3E, SLE&M					
Lake Martha Dan and Reservoir	Big Cottonwood Creek to Jordan River	Sec. 2, T35, R3E, SLB&M					
Lake Solitude Dam and Reser- voir	Big Cottonwood Creek to Jordan River	Sec. 34, T25, R3E, SLB&M					
Silver Lake Dass and Reservoir (Hunter and Moon Lakes)	Hunter, Silver, and Hoon Lakes to Jordan River	Sec. 24, TLS, R2W, SL RA M					
Willow Heights Dam and Reser- voir	Big Cottonwood Creck to Jordan River	Sec. 22, T25, R3E, SLRAM					
Argenta Dam and Reservoir	On Big Cottonwood Creek to Jordan River	Sec. 13, T25, R2E, SLB&4	660A-418-3 and 4, Oct. 19241/	None	None	66-4) Feb.	
Twin Dam and Reservoir	Offstream site in Cottonwood Canyon	sec. 35 and 36, T2S, Rif, SLBAM	USGS Quad Sheet, $7.5'$ series, $1 = 24,000$	[lone	None	None	
Hughes Canyon Dan and Reservoir	Hughes Canyon to Big Cottonwood Creek to Jordan River	Sec. 13, T25, R1E, SLB&M					
Jeremy Dam and Reservoir	On East Canyon Creek above East Canyon Reserveir	Sec. 2, TLS, R3E, SLB&M				66-4 June	
Redwood Dam and Reservoir	On Jordan River 1 mile east of Riverton	Sec. 26, T35, RLW, SLEBH				66-4 Feb.	
Midas Dam and Reservoir	On a small tributary to the Jurdan River	Sec. 17, T3S, R1W, SLB&M	1" = 200', CI = 2', 66PT-418-467 through 470	None	None	66-4 Жеу	
100th South Dam and Reservoir (South Jordan Dam)	On Jordan River	Sec. 11, T3S, R1W, SLR&M	USGS Quad Sheet, 7.5' series, 1 = 24,000			66-4 Mar.	
59th South Dam and Reservoir	On Jordan River	Ng, Sec. 14, T25, R1W, SLBan	USOS Quad Sheet, 7.5' series, 1 = 24,000			66-4 Mer.	
Decker Dam and Reservoir	Great Salt Lake	Sec. 21, 22, 27, and 28, TLS, RIW, SLMAM	USGS Quad Sheet, 7.5' series, 1 = 24,000			Nол 7-30	
McIntyre Lake Dan and Reservoir	Jordan River drains and sloughs to Jordan River	Sec. 23, 715, 82W, SLB&M					
Bailey Dam and Reservoir	North Point Consolidated Canal, Goggin Drain, Surplus Canal and Trighton Canal to Salt Lake	Sec. 15 through 22, 27 through 30, and 32 through 34, 71N, R2N, SLB&M	USOS Quad Sheet, 7.5' series, 1 = 24,000	See Meterials	Embarkment Hater ials Report on proposed Bailey dike & Reservoir, E. M. 24	1955	
Mili "D" Dam and Reservoir	On Big Cottonwood Creek	Sec. 7, T29, R3E, SLB&4	1" = 200', CI = 10', 660A-418-2; 1" = 50', CI = 10', 660A-418-5 <u>1</u> /			Char 660A	
Silver Lake Dam and Reservoir	Silver Lake to Big Cottonwood Creek to Jordan River	Sec. 35, T25, R3E, SLE&M					
Endot Dam and Reservoir	A bributary to Jordan Siver	Sec. 9, 10, 15, and 16, T38, R1W, SLB&M	1" - 200', CI - 2', 66PT-418-503, June 1958				

reservoir sites

Sheet	1 c	e i	1

ke Drainage Basin				Sheet 1 of 1
Geology type	Materials type	Area-Capacity curve Inawing No.	Cost-capacity curve range Prices as of	Remarko
				From 22nd Elennial Report of State Engineer July 1, 1938, to June 30, 1940 Peneibility doubtful 7.5' Qued Series - Brighton
		66-418-633 7-14-50	1 ,040 AF 1950	Design drawing No. 65-418-311 1/ Topography by State Engineer USBR 7.5' Quad Series - Draper
l		66-418-1045 7-25-57	3,400 AF 1959	USBR 7.5' Quad Series - Draper
l				Drawing not in files State Engineer's Office 7.5' Qued Series - Dreper
l				From 22nd Biennisl Report of State Engineer July 1, 1938 to June 30, 1940 Recompaissance made 7.5' Quad Series - Draper
l		66-418-638 8-8-50	400 to 600 AF Oct. 1958	$1/$ Located 5 miles east of Sandy and $\frac{1}{2}$ mile south of Big Cottonwood Canyon 7.5' Quad Series - Draper
l				From 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Recommaissance made 7.5' Quad Series - Draper
l		66-418-1044 7-25-57		USBR 7.5' Quad Series - Draper
l				From 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Surveyed No cost est. Salt Lake City Corporation 7.5' Quad Series - Brighton
l				Prom 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Surveyed No cost est. Salt Lake City Corporation 7.5' Quad Series - Brighton
l				From 22nd Biennial Report of State Eugineer July 1, 1938, to June 30, 1940 Feasibility doubtful 7.5' Quad Series - Brighton
l				From 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 Kennecott Copper Corp. proposed to build one dam which will inundate 3 lakes 7.5' Quad Series - Magna
l				Prom 22nd Bienuisl Report of State Engineer – July 1, 1938, to June 30, 1940 Pessibility doubtful 7.5° Quad Series - Park City West
None	None	66-418-642 Feb. 1949	12,600 AF Dag, 66-404-1844 1949	l/ Salt Lake City engineering topography 7.5° Quad Series - Hount Aire
None	None	None	1,370 AF Prices - Oct. 1959	USBR 7.5' Quad Series - Draper
l				From 22nd Biennial Report of State Engineer – July 1, 1938, to June 30, 1940 Infeasible because reservoir site is too steep 7.5' Quad Series - Sugar House
1		66-418-569 June 1947		USBR 7.5' Quad Series - Big Dutch Hollow (not in files)
		66-418-677 Feb. 1953	10,000 to 50,000 AF 4-2-53 No number	USBR 7.5' Quad Series - Midvale
None	None	66-418-1153 Mey 1958	500 to 6,000 AP 1958	USBR 7.5' Quad Series - Midvale
l		66-418-679 Mar. 1953	10,000 to 50,000 AF 4-3-53 No number	USER 7.5' Quad Series - Midvale
l		66-418-678 Mar. 1953		USER 7.5' Quad Series - Salt Lake City South
l		No number 7-30-57		USER 7.5' Quad Series - Salt Lake City South
l				Kennecott Copper Corp. proposed to raise dam From 22nd Biennial Report of State Engineer July 1, 1938, to June 30, 1940 7.5' Quad Series - Magna
See Materials	Dubankment Mater- iuls Report on proposed Bailey dike & Reservoir, E. M. 24	No number 1955	30,000 to 130,000 AF	USER Found in manila folder "Magna Area Development" 7.5' Quad Series - Saltair
1		Chart on 660A-418-2		$\underline{1}f$ From Salt Lake City Engineering Dept. topography 7.5' Quad Series - Mount Aire
1				From 21st Biennial Report of State Engineer July 1, 1936, to June 30, 1938 7.5' Quad Series - Brighton
l				7.5' Quad Series - Midvale

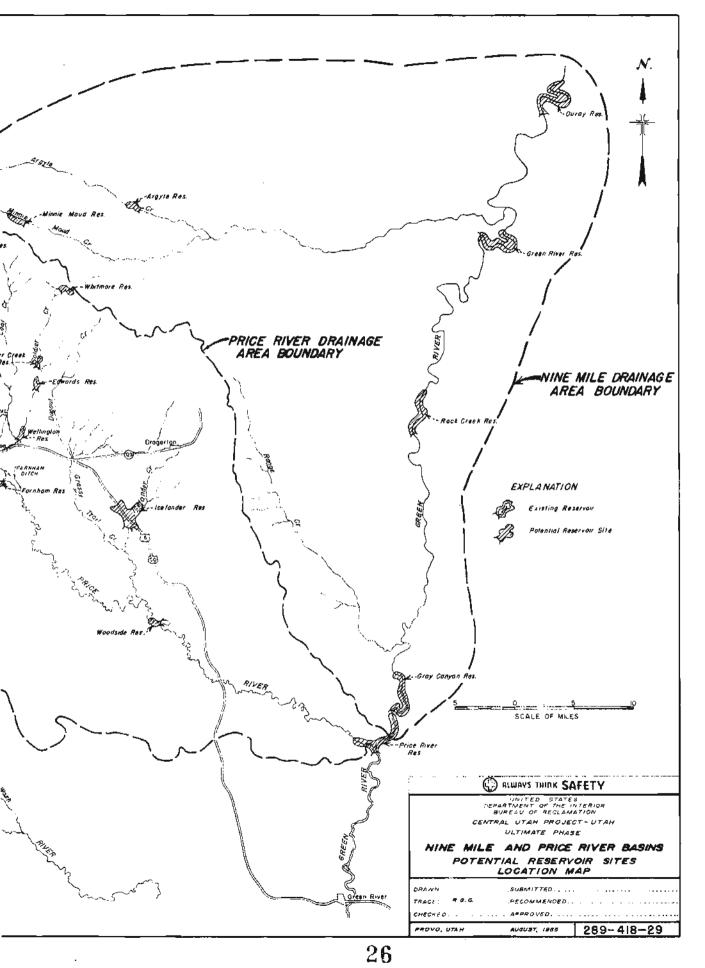
Central Utah project Ultimate phase - Utah Potential reservoir sites

Sevier River Basin Location: Topography Area-ca township Scale: CI Geology Materials cur and range Drawin Feature Drainage Drawing No. type type Sec. 31, T36S, R5W, Matchtown Dam and Reservoir Sevier River SIBLY Blue Springs Dam and Reservoir Upper Mammoth Creek and Castle Sec. 7, T368, R7V, Creek to Sevier River SLEGM Showalter Dam and Reservoir Sevier River Sec. 14, T355, R5W, SLB&M Pangaitch Creek No. 1 Dam and Sec. 29, 7345, R5W, Panguitch Creek to Sevier River SLD&M Reservoir Parguitch Creek No. 2 Dam and Sec. 32, T348, R5W, Panguitch Creek to Sevier River Reservoir SLDAN Cove Creek Dam and Reservoir Cove Creek to Sevier River Sec. 24, T255, R7W, SLB&M Sec. 8 and 17, T23S, Sastian Dam and Reservoir Feterson Creek to Sevier River RIW, SLEAM Lost Creek Dam and Reservair North Fork Lost Creek to Sevier Sec. 21, T235, HIE, Biver ST-96M Woods Lake to Salina Creek to Sec. 15, T205, R3E, Woods Lake Dam and Reservoir SLBSM Sevier Creek Bull Pasture Dam and Reservoir Salina Creek to Sevier River Sec. 23, T225, R3E, **SLBAK** Togo Nictche Dam and Reservoir Yogo Creek to Salina Creek to Sec. 34, T225, R3E, Sevier River SLRAM Willow Creek Dam and Reservoir Willow Creek to Sevier River Sec. 27, T205, R15, SLBM Yuba Dan and Reservoir Sevier River Sec. 1, T175, R2V, 1" = 200', 66-418-11, 1947; 1" = 400', CI = 10', 1/ 660A-404-12 (10 sheets) 66-418 **SLBAK** 1959 66-418 Chicken Creek Dam and Reservoir On Chicken Creek, a tributary to Sec. 20, 715S, R1W, 1" = 400', CI = 10', 66PT-418-504 through 509 Sevier River SLBAM June 1 Mills Dam and Reservoir Sevier River Sec. 15, T158, R2W, SLBM Dyer Dam and Reservoir Drainage from Tintic Mountains Sec. 22, 26, and 27, T13S, R4W, SLD&M 1" - 10001, 66PT-418-42, 1947; 66-418-141, 66-418 1947; 66-418-257, 1948 to Sevier River Leanington Jam and Reservoir Sec. 28, 7149, R3W, SLBAM Sevier River (Sevier Bridge) Lynndyl Dam and Reservoir Sevier River Near intersection 1" = 200', CI = 10' None None No man 6-6-55 of sec. 3, 4, 9, and 10, T165, R5W, SLBAM Prepared USGS Que Sevier River 1" = 400', 660A-418-131 through 134, June 1958 DMAD Dam and Reservoir Sec. 26, T16S, R6W, SUBAM Sec. 2, T215, A3W, SLB&M Sagle Hollow Dam and Reservoir Pioneer Creek to Sevier River Magpie Hill Dam and Reservoir Pioneer Creek to Sevier River Sec. 23, T205, R4W, SLR&M Sec. 32, T165, R4W, Oak City Dam and Reservoir Oak Creek to Sevier River

SLB&N

dr sites asin

	tlofl
picity Cost-capacity	
g No. Prices as of Remarks	
From 22nd Biennial Report of State Engineer Est. 13,000 AF - \$54,312 Guy Sterling,1916 Built and failed	
From 22nd Biennial Report of State Engineer Eat. 5,000 AP = \$40,390 Guy Sterling, 1916 15" Quad Series - Pangulth Lake	
From 22nd Bienniel Report of State Engineer Est. 12,000 AF - 4266,453 Guy Sterling, 1916	
From 22nd Biennial Report of State Engineer Reservoir site infeasible - no water available	
From 22nd Bienniel Report of State Engineer Est. 370 AF - \$37,949	
From 22nd Biennial Report of State Engineer	
From 22nd Bisnnisl Report of State Engineer Reservoir site infea because all water in source is appropriated Failed, not rebuilt	
From 22nd Biennial Report of State Engineer	
From 22nd Biennial Report of State Engineer Est. 41 AF - \$6,344	
From 22nd Signal Report of State Engineer Reservoir sits infea because all vater in source is appropriated Est. 1,773 AF - \$119,602	asible
From 22nd Biennial Report of State Engineer Reservoir site infea because all water in source is appropriated Est. 328 AF - \$21,728	asible
From 22nd Biennial Report of State Engineer Fessibility doubtful	ı
-1047 1/ By F. W. Cottrell, Engineer for Consolidated Sevier Bridge Rese 15' Quad Series - Scipio North	ervoir (
3-1046 30,000 to 03888 1959 50,000 AF June 1960	
USBR	
3-525 530,000 AF USER Recon. est., 1949 15' Qued Series - Lynndyl	
15 28	
uber à0,000 AF USER 5 Jan. 1959 15' Quad Series - Oak City 1 from 24 Speet	
$1j^{\prime}$ U. S. Goil Conservation Service - by Gilbert P. Searle 15' Quad Series - Oak City	
From 22nd Biannial Report of State Engineer Est. 175 AF - \$30,971	
From 22nd Biennial Report of State Engineer Est. 55 AF - \$40,570 7.5' Quad Series - Molden	
From 22nd Bienndel Report of State Engineer Est. 34 AF - \$15,957 15' Quad Series - Oak City	


Central Utah project Ultimate phase - Utah

			F	Potential reservoir sites San Pitch River Twein		
Feature	Drainage	Location: township and range	Topography Scale, CI Drawing Fa.	Geology type	Materials type	Àr - D
Milburn Dam and Reservoir	San Pitch River	Sec. 12, T13S, R4E, SLB&M	1" = 500', CI = 10', 239PT-418-61/			
CottonWood Creek Dam and Reser- voir	Cottonwood Creek to the San Pitch River	Sec. 23, T13S, R5E, SL DAM				
Canal Creek Dam and Reservoir	Canal Creek to San Pitch River	Sec. 31, 7155, R4E, SlDam				
Black Hills Dam and Reservoir	Oak Creek to San Pitch River	Sec. 26, T155, R4E, SLLAM				
Freeman-Allred Com and Reser- voir	Tributary to San Pitch River	Sec. 35, T158, R4E, SLOM4	Damsite: 1" = 50', CI • 2', 238,418-9,½/ Heservoir: 1" = 100', CI = 5', 238-418-8; 2380A-418-22/			252
Sandridge Dam and Reservoir	San Fitch River	T16S, R3E, SLBAM				
Pigeon Hollow Dam and Reser- voir	Pigeon Hollow Creek to San Pitch River	Sec. 14, T16S, R3E, SLD&J:				
New Canyon Dam and Reservoir	New Canyon Creek to Ephraim Creek to San Fitch River	Sec. 3, T175, R42, SL364				
Maple Creek Pond Dam and Reser- voir	Maple Creek to Ephraim Creek to San Pitch River	Sec. 19, T175, R4E, SLJ&4				
Blue Lake Dam and Reservoir	South Fork Twelve-Mile Creek to San Pitch River	Sec. 12, T2OS, R3E, SLD&M				
Andrews Hole Lake Dam and Reservoir	South Fork Twelve-Mile Creek to San Pitch River	Sec. 7, 720S, R4E, SLBAM				

sites asin

		Area-capacity	Cost-capacity	
67 e –	y Materinis type	curve Drawing No.	curve range Prices as of	Remarks
				From 22nd Biernial Report of State Engineer Est. 11,417 AF - \$557,098 1939 USER Fielsen 1/ Topography by USER
				From 22nd Biennial Report of State Engineer Two est #9 Cottonwood - 06 AF - \$37,613 #11 Cottonwood Creek - 32 AF - \$19,268
				Prom 22nd Biennial Report of State Engineer Zat. 67 AF - \$78,761
				From 22nd Biennial Report of State Engineer Est. 120 AF USDR Larson 1935
		1/0 number 5-13-49 238-418-4 <u>3</u> /	560 AF 650 AF No number	USER report 1/ Topography by USER 2/ Topography on water appropriation application by F. W. Cottrell, employed by State Engineer 3/ Preliminary estimate drawing with area-capacity curve
				From 22nd Biennial Report of State Engineer
				From 22nd Biennial Report of State Engineer Feasibility doubtful
				From 22nd Biennisl Report of State Engineer Eat. 160 AF - \$85,891
				From 22nd Biennial Report of State Engineer Reservoir site infessible Subterranean drainage of reservoir site
				From 22nd Dienniał Report of State Engineer Est. 46 AF - \$17,438
				From 22nd Biennial Report of State Engineer Est. 27 AF - \$12,569

Central Utah project Ultimate phase - Utah

V . V . N	- Francis		
Potential	TERETVOI	r sites	
	River Ba		

· · ·				Price River Basin		
Feature	Drainage	Location: township and range	Topography Scale: CI Dreving Ko.	Geology type	Materials type	Area-caj cum Dravinj
Cooseberry Dam and Reservoir	Gooseberry Creek to Fish Creek to Price River	Sec. 19, TL33, R6E, SLB&M, 9 wd. east of Fairview, Utah	1" = 50', CI = 5', 1941; 1" = 400', CI = 10', 239FT-418-34	Field notes only in Geology section	See Geology	239-8-2
Nammoth Dam and Reservoir	Meadwaters of Lower Conseiberry Creek to Fish Creek to Price River	Sec. 6, T135, R6E, SLBAN	1" = 50', CI = 5'			239-416
White River Dam and Reservoir	On White River, a tributary to Price River	Sec. 31, TLOS, R&E, S <u>LB&</u> H	1" = 1000', CI = 10', 239PT-418-35	Field notes only in Geology section	See Geology	239-41 2-23-55
Colton Dam and Reservoir	Price River below month of White River	Sec. 26, TILS, R8E, SL98M				
Richards Dam and Reservoir	On Beaver Creek, a tributary to Price River	Sec. 15, T12S, RÔE, SlB&M	1" = 500', CI = 25', 239PT-418-47	Field motes only in Geology section	See Geology	No mumi 12-17-5
Willow Creek Dam and Reservoir	Willow Creek, a tributary to Price River	Sec. 10, T125, R10E, SLB&M	1" = 50'; 1" = 200'; CI = 5'			1. 239 2. 239
Helper Dan and Reservoir	Price River	Sec. 13, T13S, R9E, SL984				
Oten Dam and Reservoir	Bob Wright Creek to Gordon Creek to Price River	Sec. 6, T145, R8E, SLAMM				
Whitemore Dam and Reservoir	On Soldier Creek, a tributary to Price River	Sec. 33, 7125, R125, S1366	1" = 500', CI = 25', 239PT+418-51	Field notes only in Geology section	See Gaology	No mm 12-18-1
Soldier Creek Dam and Reservoir	On Soldier Creek to Price River	Sec. 36, 7138, R112, SLB&::				
Edwards Dom and Reservoir	On Soldier Creek, a tribulary to Price River	Sec. 12, T145, R11E, S1E&4	1" = 500', CI = 25', 239PT-418-50	Field notes only in Geology section	See Cealogy	No mua 12-16-
Wellington Jam and Reservoir	On Soldier Creek, a tributary to Price River	Sec. 35, 714S, RILE, SLDAN	1" = 500", CI = 25", 239PT-418-48	Field notes only in Geology section	See Geology	No muni 12-30-1
Serviceberry Dea and Reservoir	Serviceberry Creek to Miller Creek to Frice River	Sec. 10, T155, R8E, SLE&M				
Miller Creek Dam and Reservoir	Miller Creek to Price River	Sec. 22, T155, R10E, SLDAN				
Farnham Dam and Reservoir	On Willer Creek to Price River	Sec. 21, T15S, R11E, SLEAN, 3.5 mi. SE of Wellington, Utah	1" • 1000', CI = 25', 239PT-418-53	Field notes only in Geology section	See Geology	No muni Dec. 1
Woodside Dam and Reservoir	Price River	Sec. 22, T175, R13E, SL3&M				
Price River Dam and Reservoir	Green Rivor	TIGS, RIGE, SLDAM				
Icelander Dam and Reservoir	Icclander Creek to Grassy Trail Creek to Frice River	Sec. 8, T16S, RL3E, SLNAG	1" = 1000', CX = 10', 1040PT-418-4			USBR Region

i reservoir sites e River Basin

Geology

type

Field notes only in Geology section

Field notes only

in Geology section Field notes only in Geology section

Field notes only in Geology section

Ares-capacity

Materials

type

See Geology

See Geology

See Geology

See Geology

See Geology

See Geology

No number Dec. 1958

USBR Region 4 Cost-capacity

curve <u>prawing</u> No.	curve range Prices as of	Hémárké
239-P-21T	6,000 to 17,500 AF July 1958	Reference drawing No. 239-418-6 USBR Gooseberry project report Jan. 1953
239-418-1	Dec. 1949	USDR Gooseberry project report Jan. 1953
239-418-31 2-23-55	4,000 to 8,000 AF 1957	Two alternate sites - ares-capacity curves for each 239-418-32 and 33 USBR 15' Quad Series - Soldier Summit Suggested site by Wayne Cahoon 15' Quad Series - Soldier Summit
No number 12-17-58 1. 239-418-29	2,000 AF July 1958	USER USER USER
2. 239-418-30		UBR
		From 22nd Biennial Report of State Engineer - Feasibility doubtful 15' Qued Series - Castlegate
		Prom 22nd Biennial Report of State Engineer - Fessibility doubtful 15' Guad Series - Soldier Summit
No number 12-18-58	1,000 AF July 1956	USBR 15' Quad Series - Wellington
		From 22nd Biennial Report of State Engineer — Reservoir site infeasible No water 15' Quad Series - Wellington
to number 12-16-58	3,000 AF July 1958	USBR 15' Quad Series - Wellington

3,000 AF July 1958 USER 15' Quad Series - Wellington

Se≕ Geology	No number 12-30-59	3,000 to 6,000 AF Jan. 1959	Upper axis USha 15' Quad Series - Wellington	
			From 22nd Biennial Report of State Engineer 15' Quad Series - Soldier Summit	Feasibility doubtful
			From 22nd Biennial Report of State Engineer 15' Quad Series - Castlegate	Feesibility doubtful

6,000 AF July 1958 USBR 15^t Quad Series - Wellington

From 22nd Biennial Report of State Engineer Est. 14,000 AF - \$400,000 USGS 15' guad Series - Woodside

Region 4 USIR

USGS - 15' Qued Sheet - Woodside, Utah

Central Utah project Ultimate phose - Utah

		Fotential reservoir sites Nime-Mile Brainage Basin				
Feature	Drainage	Location: township and range	Topography Scale: CI Drawing No.	Geology Lype	Materials type	Area- Dray
Oursy Dam and Reservoir	On Green River	Sec. 18, TION, R19F, SLEWN				
Rock Creek Dam and Reservoir (Desolation Canyon)	Ön Green River	Sec. 32, TluS, RITE, SLEL:				
Green River Dom and Reservoir	On Green River	Sec. 5, M2S, R18E, SLNAM				
Gray Canyon Dam and Reservoir	On Green River	Sec. 31 and 36, 7188, R16 and 17E, SLD&M				

l Utah project te phase - Utah

l reservoir sites Drainage Basin

Drainage Basin						Sheet 1 of 1
Geology type	Katerials type	Area-capacity curve Drawing No.	Cost capacity Curve range Prices as of		Remarks	
				USDR 15' Qued Series - Mutters Hole		-

From 22nd Biennial Report of State Engineer 300,000 AF 15' Quad Series - Flat Canyon

Prom 22nd Biennial Report of State Engineer 1,500,000 AF 15' Quad Series - Nutters Hole

USER

CHAPTER III

WATER SUPPLY

Introduction

The water supply chapter contains a discussion of water resources, water requirements for irrigation, and water rights within the ultimate phase project area. These factors are considered for the Uinta Basin, the Sevier River Basin, and the Price River Basin. Irrigation requirements were essentially satisfied for the areas included in the Bonneville unit definite plan report of August 1964. Water may be diverted, however, to the Delta area in the Sevier River Basin as part of the Bonneville unit. This diversion may be made in lieu of providing water to full service lands in the Mosida and Mona-Nephi areas. If this should prove feasible, details will be included in a supplement to the Bonneville unit definite plan report. Most of the areas of the Bonneville unit will not be affected by the ultimate phase with the possible exception of the Mosids and Mona-Nephi areas. Therefore, a water supply discussion for the Bonneville unit areas is not included in this report. Areas to receive only municipal and industrial project water are discussed separately in Chapter VI, and include Utah, Salt Lake, Weber, Davis, Summit, and Morgan Counties.

Streamflow records for most stations have been developed for the 43year period, 1920 to 1952. This period includes the extremely low runoff years of 1931, 1934, 1935, and 1961 as well as the exceptionally high runoff years of 1921, 1922, 1923, and 1952. The variations in water supply found during this extended period should be representative of the range expected in future years.

An inventory of water rights in the ultimate phase area includes existing court decrees, agreements, adjudications, and approved or pending water right applications. For project facilities this inventory also includes applications owned by the government and additional applications and agreements that will be needed to guarantee a water supply for the operation of the ultimate phase of the Central Utah project.

Detailed water right abstracts for the streams in the ultimate phase area are included in the supporting data on file in the Central Utah Projects Office in Provo, Utah.

Uinta Basin

In the Uinta Basin, water supply data are included for Brush Creek, Ashley Creek, Whiterocks River, Uinta River, and Lake Fork. Data for

CHAPTER III

Duchesne River and its upper tributaries are included in the Bonneville unit report dated August 1964.

Water resources

Streamflow data and records at various points on Uinta Basin streams are summarized in the tables on the following pages. The locations of the gaging stations in the Uinta Basin are shown on the map on page 33.

Streamflow and canal diversion records by months are recorded in supporting data on file in the Central Utah Projects Office.

Quality of Water

Quality of water data for this study have been collected by the Bureau of Reclamation and adopted from the Geological Survey (Chemical Analyses of Surface Waters in Utah, October 1959 to September 1962) and from the Utah State Engineer (Bulletin No. 10). These data indicate the Uinta Basin streams to be of adequate quality for irrigation. The streams in their upper reaches contain low concentrations of dissolved solids, with increasing concentrations as the water flows downstream. The principal constituent is calcium bicarbonate with a small amount of sodium present. Assuming adequate drainage, the chemical concentrations are low enough that they should not present a hazard to the soils. Results of chemical analysis of water samples are also found in the supporting data.

Water requirements

Lands in the Uinta Basin were considered by areas in order to facilitate the determination of the theoretical unit irrigation water requirements. Climatological data were obtained from Weather Bureau stations located at Vernal, Roosevelt, Altamont, and Duchesne. Stations in the vicinity of the respective areas were used to determine the length of the growing season, frost-free period, effective precipitation, and other data pertinent to the determination of irrigation requirements. Climatological data from the four weather stations used are shown in the table on page 34.

Cropping Pattern

The cropping patterns expected to develop under project conditions are shown by areas in the table at the top of page 35.

Summary	of stream	gaging data - Uinta Basin	
	(Unit.	1000 acrefeet)	

		(Unit: 1000 acre-feet			
"	Drainage		Average	Annual	. runoff fo
	area	- 1	recorded		<u></u>
Gaging station	(sq.mi.)	Period of record1/	flow	Average	Year
Lake Fork above Moon Lake near Mountain Home	78	1933-34, 1943-55	77.5	79.42/	1934
Brown Duck Creek near Mountain Home	15	1934, 1943-55	6.9		1934
Lake Fork below Moon Lake near Mountain Home	110	1921-34 (fragmentary), 1942-62	87.2	92 <u>73</u> /	1934
Yellowstone Creek below Swift Creek near		-2			
Altonah	99	1950-55	86.9	96.4 <u>2</u> /	1934
Yellowstone Creek near Altonah	131	1945-62	94.8	103.32/	1934
lake Fork near Upalco	418	1943-55	42.6 <u>4</u> /	/	1954
Uinta River below Gilbert Creek near Neola	33	1951-55	28.8	33.8€/ 113.2≧/	1934
Uinta River above Clover Creek near Neola	132	1946-55	102.8	113.2/	1934
Clover Creek near Neola	9,5	1951-55	1.4	1.9 ² / 135.0 ² /	1934
Uinta River near Neola	181	1948-60	122.0	135.02/	1934
Whiterocks River above Paradise Creek near		2,000			-73
Whiterocks	90	1946-55	71.2	77.2 ^{2/} 5.2 ^{2/} 86.5 ^{2/} 5.1 ² /	1934
Paradise Creek near Whiterocks	10	1947-55	5.1	12122/	1934
Whiterocks River near Whiterocks	115	1900-03, 1909-10, 1913-62	89.7	86 22/	1934
Farm Creek near Whiterocks	55		4.2	00.1Z/	· · ·
		1950-62 Joha ka Josa sa		2.15/	1961 105h
Deep Creek near Lapoint	75	1943-45, 1950-55	5.1	65.6 <u>5</u> /	1954
Uinte River at Fort Duchesne	672	1900-20 (fragmentary), 1943-58	84.7		1934
Ashley Creek below Trout Creek near Vernal	27	1944-54	17.5	17.82/ 14.92/ 72.42/	1934
South Fork of Ashley Creek near Vernal	20	1944-55	14.4	14.92/	1934
Ashley Creek near Vernal	101	1914-62	74.0	72.42/	1934
Mosby Canal near Lapoint		1955-62	2.4		1955
Dry Fork above Sinks near Dry Fork, Utah	48	1940-46, 1955 - 62	26.0	29.96/	1934
Dry Fork above Sinks hear Bry Fork, Stan	48	1940-62	26.07/		±95.
North Fork of Dry Fork near Dry Fork, Utah	12	1947-62	4.4	1-2/	1934
,	12	1947-62	5.8	4.92/ 6.42/	1934
East Fork of Dry Fork near Dry Fork, Utah	12	1947-02	. 2.0	0.45/	1934
East Fork of Dry Fork above Sinks near Dry	Ô	1061 60	Q C		1.061
Fork, Utah	9	1961 - 62	8.6	-	1961
Dry Fork below Springs near Dry Fork, Utah	102	1941-45, 1954-62	21.9	-	1959
Dry Fork at mouth near Dry Fork, Utah	118	1954-62	13.8	-	1959
Ashley Creek at the "Sign of the Maine" near	- 1		0 -	09/	
Vernal	241	1940-62	87.9	89.9 <u>8</u> /	1959
Ashley Creek near Jensen	386	1947-62	38.4	-	1961
Oaks Park Canal near Vernal	-	1942-62	4.6		1955
Brush Creek above cave near Vernal	23	1947-54	12.3	12.12/	1934
Brush Creek near Vernal	82	1940-62	24.9	26.84/	1934
Little Brush Creek below East Park Reservoir				,	
near Vernal	20	1950-55	9.6	10,9 <u>3</u> /,	1934
Little Brush Creek near Vernal	28	1946-52	14.3	12.510/	1934
Brush Creek near Jensen	255	1940-62	13.9	-	1959
Green River near Jensen	25,400	1947-60	3,212.0	-	1954
Green River near Ouray	35,500	1948-62	4,145.0	_	1961
Yellowstone Feeder Canal		1941-62	12.3	11.34/	1922
TITCH COME Teader Canet	_			اسال و شد	1760

Water years, not including records after 1962.

Historical flow,

Past modified flow.

Present modified flow.

Historical flow record of average annual runoff for period 1921-62.

- Past modified flow plus flows in Mosby Canal, 1955-62.
- Excludes Mosby Canal flows, 1955-62.

Past modified flow minus flows of Oaks Park Canal, 1941-62.

בוהומריוטאיו בוריומורי Fast modified flow plus flows stored in Oaks Park Reservoir, 1947-54.

Past modified flow record of average annual runoff for period 1920-60.

Note: Historical flow is the flow actually experienced at a gaging station or point of measurement. It is the total runoff of of measurement as influenced by nature and the activities of man. It may be recorded or estimated. Past modified flow is the historical and/or natural flow corrected to show for the period of study the man-made developm beginning of the period of study. Present modified flow is the historical and/or natural flow corrected to show the effect of the present man-made develop the period of study.

gîn	gàa	ta -	Uinta	Basin
DO 4	acre	-fee	t)	

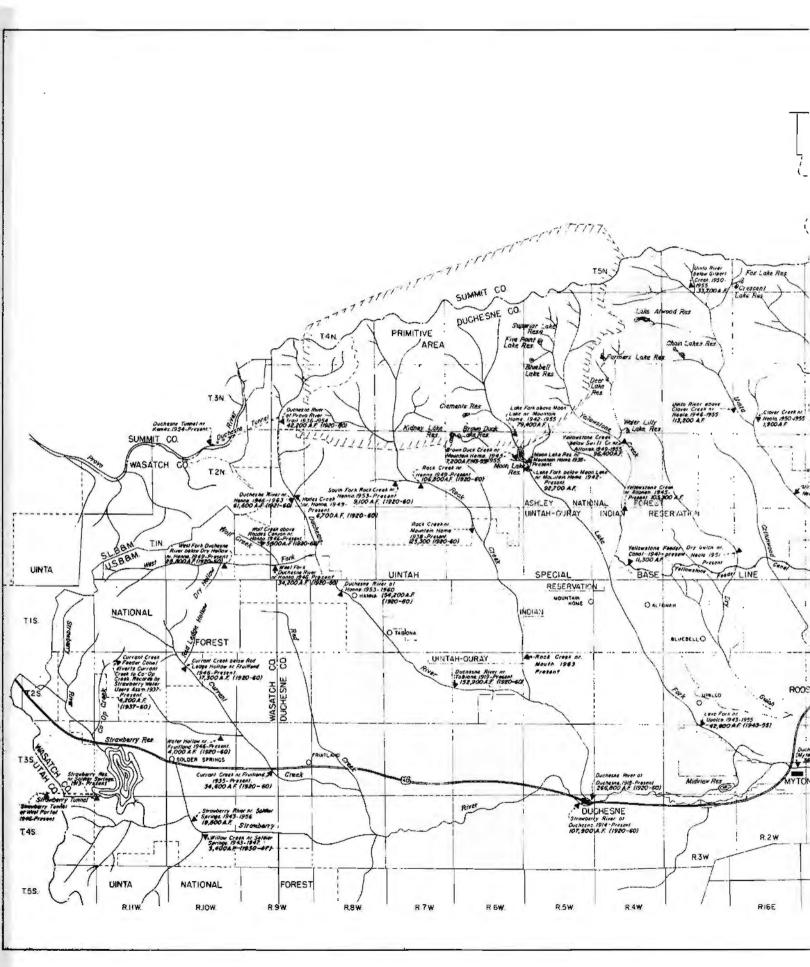
D acre-reet)	Average	Annual		or period of a		
ord <u>l</u> /	recorded flow	Average	M: Year	inimum Quantity	Maxi Year	uantity
ō ntary),	77.5 6.9 87.2	79.4 ² / 92.7 ³ /	1934 1934 1934 1934	33.4 1.5 39.1	1922 1952 1952	143.4 12.1 164.0
	86.9 94.8 42.6 <u>4</u> / 28.8 102.8 1.4 122.0	96.42/ 103.32/ 33.22/ 113.22/ 1.92/ 135.02/	1934 1934 1954 1934 1934 1934 1934	33.4 39.1 13.1 8.5 42.9 0.1 54.1	1922 1922 1952 1922 1922 1921 1921 1922	198.9 201.0 115.7 66.1 230.2 6.2 262.0
0, 1913-62 5 stary),	71.2 5.1 89.7 4.2 5.1 84.7	77.22/ 5.22/ 86.52/ 5.12/ 65.62/	1934 1934 1934 1961 1954 1934	23.9 1.2 30.4 1.9 2.6 9.0	1922 1921 1922 1922 1944 1922	160.7 8.5 175.3 11.9 8.2 217.0
2	17.5 14.4 74.0 2.4 26.0 26.0 <u>7</u> /	17.82/ 14.92/ 72.42/ 29.96/	1934 1934 1934 1955 1934	5.2 4.6 31.3 1.2 9.1	1921 1921 1921 1961 1921	39.0 28.0 129.0 3.6 57.3
	20.0 <u>1</u> / 4.4 5.8	4.92/ 6.42/	1934 1934	1.4 1.2	1921 1921-22	11.4 12.9
2	8.6 21.9 13.8	- -	1961 1959 1959	5.2 4.2 1.7	1962 1944 1962	12.0 48.3 31.1
	87.9 38.4 4.6 12.3 24.9	89.9 <u>8</u> / - 12.1 <u>9</u> / 26.8 <u>4</u> /	1959 1961 1955 1934 1934	42.8 7.3 2.4 4.9 12.2	1944 1952 1953 1921 1921	142.3 93.2 7.4 22.7 46.1
	9,6 14.3 13.9 3,212.0 4,145.0 12.3	10.93/ 12. <u>510</u> / - 11.34/	1934 1934 1959 1954 1961 1922	3.2 2.4 2.8 2,056.0 2,087.9 1.5	1922 1921 1962 1952 1952 1952	23.4 29.3 30.9 4,522.0 6,424.6 20.4

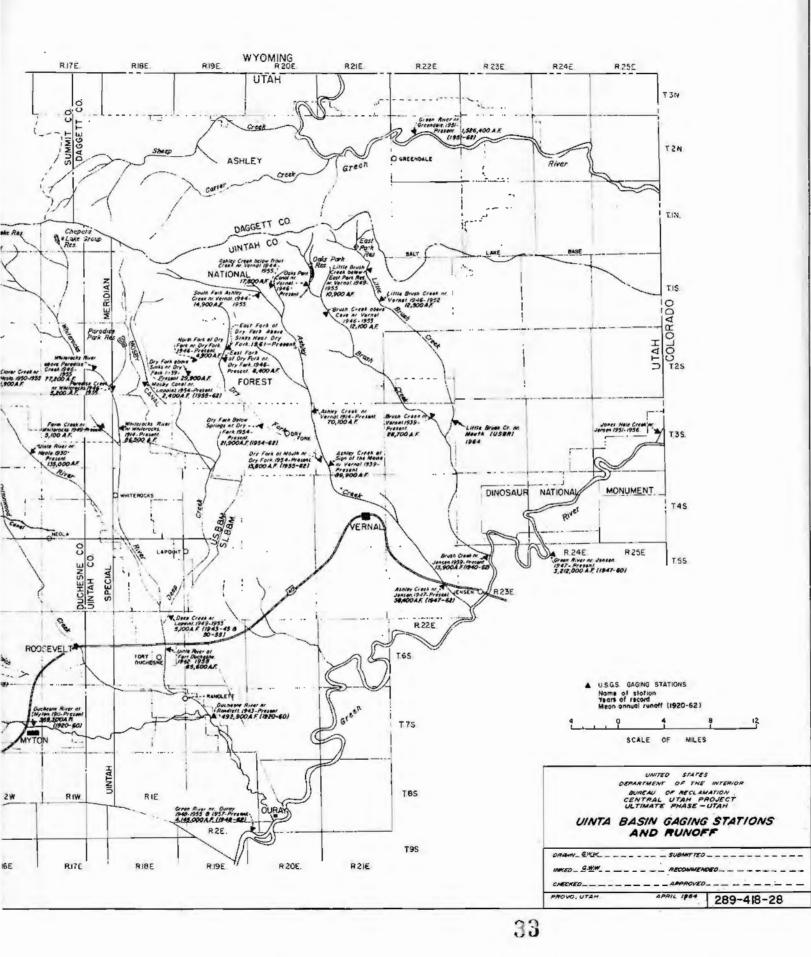
point of measurement. It is the total runoff of a drainage area above, the point ay be recorded or estimated. Now for the period of study the man-made developments as they existed at the

> show the effect of the present man-made developments if they had existed over

31

Annual streamflo


								_				_	0000	<u> </u>
		Little								_				
		Brush	Brush					Black		Three				
		Creek below	Creek					Canyon		tribu-	North	Flume	Dry Fork	κ.
	Brush	East Park	above	Brush	Ashley	Ashley	Cow Hollow	at	East Fork	taries	Fork	MIII	above	
	Creek	Reservoir	cave	Creek	Creek at	Creek at	at	Straw-	of Dry	of East	of Dry	(tribu-	Sinks	Pa
	near	near	near	near	Strawberry	Sign of	Stravberry	berry	Fork near	Fork of	Fork near	tary to	near	Cree
	Vernal	Vernal	Vernal	Vernal	agueduct	the Maine	aqueduct	aqueduct	Dry Fork	Dry Fork	Dry Fork	Dry Fork	Dry Fork	k Whit
	(past	(past	(past	(present	(past	(past	(histor-	(histor-	(histor-	(histor-	(histor-	(histor-	(past	()
Year	mod.)	mod.)	mod.)	mod.)	mod.)	mod.)	ical)	ical)	ical)	ical)	ical)	ical)	mod.)	
	1	2	3	4	5	6	7		9	10	<u> </u>	12	13	
	_								e					
1920	20.4	16.5	16.2	36.3	35.0	127.0	1.0	2.6	9.8	9.2	7.2	.8	41.4	
21	29.3	23.2	22.7	46 . i	49.5	175.8	1.5	3.7	12.9	13.1	11.4	1,1	57.3	
22	28.2	23.4	22.3	45.5	48.7	173.1	1.4	3.6	12.9	12.8	11.2	1.1	55.4	
	20.5	17.5	18.2	41.4	38.8	142.1	1,2	2.9	10.7	10.2	8.2	•9	46.8	
23 24	9.2	8.1	10.3	21.3	21.9	65.9	-,6	1.6	4.2	5.8	3.3	•5	21.0	
1925	8,4	8.0	9,2	21.1	22.4	69.1	.7	1.7	4.9	5.9	3.5	.5	24.3	
26	11.2	10.5	13.1	26.9	27.9	83.8	.a	2.1	5.8	7.4	3.5 4.8	.5	26.0	
27	15.7	12.5	13.5	31.3	33.1	112.3	1.0	2.5	8.1	8.7	5.9	•7	39.2	
28	17.1	13.6	16.4	32.8	33.6	110.6	1.0	2.5	8.3	8.9	6.6	.7	34.9	ľ
29	20.3	16.6	16.6	37.8	33.0	135.6	1.1	2.8	10.2	9.8	7.6	.8	45.6	
1020	20.3	12.8	14.6	37.0 31.4		104 .1	1.0	2.0	7.4	9.0 8.5				
1930	⊥4•7 4•4	4.6		16.1	32.3			2.4	2.1	4.3	5.5 2.0	•7 •4	35.6 14.1	ľ
31	4.4 14.7	4.0	7.5		16.3 28.4	43.0	.5 .8					.6		
32			12.9	28.5		98.8		2.1	7.6	7.4	5-3		34.1	ľ
33 34	6.9	6.4	7.6	18.8	18.6	58.2	•6	1.4	3.9	4.9	2.6	-4	21.1	
34	2,4	3.2	4.9	12.2	12.0	30-3	•4	•9	1.2	3.1	1.4	•3 •5 •4	9.1	
1935 36 37	<u>п</u> .8	10.7	10.5	26.6	24.6	86.8	•7	1.8	6.3	6.5	4.6	•5	29.4	
36	5.3	4.4	6.3	15.0	16.0	44.0	-5	1.2	2.3	4.2	1.8	•4	15.0	
37	16.6	12.3	13.7	29.6	30.2	105.2	•9	2.2	8.1	8.0	5.6	•7	35•5 36•8	
38	14.7	12.4	12.7	30.9	29.6	105.4	•9 •8	2,2	7.9	7.8	5.7	.7	36.8	
39	10.4	9.0	11.7	27.1	25.5	72.5		1.9	4.5	6.7	3.8		25.6	
1940	6.5	7.3	9.5	17.5	20.7	55.3	•6	1.5	3.5	5.4	2.8	•5	17.8	
41	16.5	14.3	15.6	31.9	34.3	125.2	1.0	2.5	9.5	9.0	7.1	.8	44.6	
42	18.2	15.3	16.8	40.9	36.7	122.4	1.1.	2.7	9.3	9.7	7.5	.8	35.5	
43	7.6	8.7	10,1	20.0	21,8	74.6	.6	1.6	9.3 4.3	5.8	2.5	•5	21.9	
43 հե	19.1	15.7	15.0	37.2	33.7	136.4	1.0	2.5	9.3	8.9	7.2	.8	42.2	
1945	9.5	8.3	9.1	22.5	22.2	75.2	•7	1.6	5.2	5.9	3.7	•5 •4	23.6	
46	5.5	5.1	6,4	14.7	16.3	μ́μ.2	•5	1.2	2.8	4.3	1.5	.4	16.5	
47	20.6	14.5	17.3	41.2	34.0	130.3	1.0	2.5	11.8	9.0	7.7	.8	40.3	
μá	10.8	9.5	11.0	25.1	23.4	74.4	.7	1.7	4.6	6.2	3.3		25.5	
49	15.0	13.2	14.6	34.0	28.9	99.4	•9	2.2	6.9	7.6	4 .8	•5 •6	34.9	
1950	19.8	14.8	14.5	36.3	31.8	113.6	.9	2.4	7.2	8.4	6.2	•7	38.6	
51	9.3	8.2	9.1	19.7	21 .1	71.1	.9 .6	1.6	4.6	5.6	3.6	.5	23.5	
52	18.9	15.6	16.0	35.4	38.0	128.5	1.1	2.8	8.5	10,0	5.7	•5 •8	¥4.5	l
53	6.2	8.1	8.2	19.7	19.5	57.7	.6	1.4	3.2	5.1	3,1	.4	22.2	
53 54 1955	5.5	6.0	7.9	16.4	17.3	54.4	•5	1.3	4.1	4.6	3.0	.4	16.4	
1955	4.1	5,1	7.8	14.4	18,1	50.0	.5	1.3	3.6	4.8	2.1	.4	16.9	
56	5.9	8.2	10.1	16.4	20.7	65.3	.6	1.5	5.7	5.4	4.1		19.7	
57	п.6	1 1. 1	9.7	27.9	26.0	89.6	.8	1.9	6.4	6.9	5.5	.5 .6	31.8	l
58	10.8	9.6	9.7 11.5		20.0	87.1	.0	1.8	6.8	6.2	6.4	.0	28.0	
		9.0 4.9	- <u>-</u> -,	23.9	23.6	0(1	• f 1.					-2		
59	5.3	4.9	6.3	15.9	14.8	39.8	. 14 . 14	1,1	2.3	3.9 4.0	1.9 2,4	•2	15.2	
1960	3.2	5.4	7.2	12.6	15.3	43.7	•4	1.1	3.4			•3 •3	17.5	l
61		7.0	8,1	13.3	19.1	54.3	.6	1,4	3.4	5.0	2.2	.4	20.3	
62		16.9	17.8	36.3	37.1	127.7	1.1	2,8	10.5	9 . 8	7.9	.8	39.0	
Total	512.1	470.3	520.5	1,149.9	1,156.1	3,863.8	34.3	85.7	276.0	304.7	210.2	25.8	1,284.6	2
		-		26.7	26.9		.8		6.4	-	4.9	.6		
Average	12.5	10.9	12,1	20+ (20.9	89.9		2.0	0.4	7.1-	4.9	•0	29.9	


.

Annual	stream	flow	in	the	Uinta	Basin
	Unit:	1.00	00 /	acre	feet	

rth ork Dry near Fork stor- al)	Flume Mill (tribu- tary to Dry Fork (histor- ical)	(past mod.)	Paradise Creek near Whiterocks (histor- ical)	Creek (histor- ical)	Whiterocks River near Whiterocks (histor- ical)	Farm Creek near White- rocks (histor- ical)	Clover Creek near Neola (histor- ical)	Uinta River above Clover Creek near Neola (histor- ical)	Uinta River near Neola (histor- ical)	Uinta River at Fort Duchesne (histor- ical)	Yellowstone Creek below Swift Creek near Altoneh (histor- ical)	Hell Canyon at Strawberry aqueduct (histor- ical)	Lake Fork below Moon Lake near Mountain Home (past mod.)
11	12	13	14	_15	16	17	18	19	20	21	22	23	24
7118334567525214155327727317346353324561	8119556778746435477658858548567584445653	41.34803029661111140586865926535965524978802 41.57542146.03029666111114058686559265359655524997802	0545247783678329521199328387054580469372 78874456676253142665367464357473555323542	81.8 151.2 1608.7 129.9 63.0 89.7 193.8 97.2 193.8 96.3 193.8 96.4 107.5 109.6 109.6 109.6 109.6 109.6 109.6 109.6 109.6 109.6 109.6 109.5 100.5	90.6 165.8 175.3 141.6 57.2 76.5 109.0 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 95.5 102.9 102.9 95.5 102.9 102.9 102.9 102.5 102.9 102.9 102.5 102.9 102.5 102.9 102.5 102.9 102.5 102.9 102.5 102.9 102.5 102.9 102.5 102.9 102.5 102.5 102.9 102.5 102.	5.7490506816753017187205463841230410312014 9.506816753017187205463841230410312014	2.4.2.1.98.1.1.4.8.9.1.2.0.7.1.1.7.1.5.9.4.6.1.9.8.1.4.3.3.3.0.2.6.5.7.8.5.2.5.4 1.1.2.2.3.2.2.1.3.2.3.2.3.1.3.1.2.2.1.3.5.7.8.5.2.5.4 1.1.2.1.1.2.1.3.5.4	115.5 214.8 230.0 76.9 93.8 104.3 143.4 164.2 134.6 164.2 134.6 164.2 134.6 164.2 134.6 129.8 122.5 139.5 129.	137.4 245.4 226.8 90.4 112.7 122.3 167.6 148.9 193.2 160.0 73.8 146.5 96.2 54.1 106.8 102.7 147.7 155.2 117.9 82.6 183.0 163.7 117.9 82.6 183.9 124.3 99.9 174.3 95.1 96.6 111.8 124.1 100.7	$\begin{array}{c} 190.9\\ 217.0\\ 165.6\\ 38.67.2\\ 76.61\\ 391.6\\ 0.0\\ 733.9\\ 64.0.7\\ 0.1.4\\ 4.95.4\\ 140.58\\ 991.6\\ 2991.6\\ 2991.2\\ 2991.2\\ 249.4\\ 2991.4\\ 2991.2\\ 214.4\\ 2991.4\\ 2991.2\\ 214.4\\ 2991.4\\ 2991.2\\ 214.4\\ 2991.4\\ 2991.2\\ 214.4\\ 2991.4\\ 214.4\\ 2991.4\\ 214.4\\ 2991.4\\ 214.4\\ 214.4\\ 2991.4\\ 214.4\\ 214.4\\ 2991.4\\ 214.$	$\begin{array}{c} 103.0\\ 182.0\\ 198.9\\ 162.4\\ 63.5\\ 77.8\\ 86.9\\ 119.4\\ 107.5\\ 141.3\\ 114.6\\ 53.7\\ 102.4\\ 68.1\\ 33.4\\ 80.4\\ 59.6\\ 133.3\\ 122.5\\ 76.4\\ 137.8\\ 87.4\\ 121.5\\ 62.1\\ 121.5\\ 62.1\\ 121.5\\ 62.3\\ 70.4\\ 99.9\\ 132.8\\ 74.0\\ 99.9\\ 132.8\\ 75.6\\ 109.7\\ 68.0\\ 100.7\\ 68.0\\ 100.7\\ 68.0\\ 100.7\\ 68.0\\ 100.7\\ 100$	4 37 4 28 9 27 8 97 6 2 26 4 7 8 8 0 5 0 6 6 0 1 26 6 6 8 6 4 2 3 6 0 5 3 5 6 5 2 2 2 4 3 4 3 1 3 2 1 2 2 3 3 2 2 4 4 2 3 2 4 2 3 3 2 4 2 3 3 2 4 2 3 3 2 4 2 3 3 2 4 2 3 3 2 4 2 2 2 3 3 2 4 2 3 3 3 2 4 2 3 3 3 2 4 2 2 2 3 3 2 4 2 3 3 3 2 4 2 3 3 3 2 4 2 2 3 3 3 2 4 2 3 3 3 3	98.9 156.2 164.0 145.8 63.8 87.8 81.6 119.7 99.8 132.6 102.2 56.7 106.8 59.6 39.1 75.0 71.3 104.7 109.2 77.5 52.4 123.0 101.6 98.8 116.3 88.0 75.7 105.6 90.5 137.0 76.3 60.7 69.3 95.0 76.3 60.7 69.3 95.0 75.0 76.3 60.7 69.3 95.0 76.3 60.7 69.3 95.0 75.0 76.3 60.7 69.3 95.0 75.0 75.2 60.7 105.6 90.8 127.0 75.2 60.7 105.6 90.8 127.0 75.2 60.7 105.6 90.8 127.0 75.2 60.7 105.6 90.9 105.6 90.8 105.6 90.9 92.9 90.8 60.7 60.7 60.7 105.6 90.8 92.9 90.8 60.7 60.7 60.7 60.7 60.7 60.7 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60.7 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60.7 60.7 60.7 60.7 60.7 60.7 60.8 90.8 60.7 60.7 60.8 90.8 60.7 60
2.4	.3 .34	17.5	2.3	50.1	57.5	2.6	.6	77.4	99.9	17.0	65.3	2.2	68.8
2.2	.4	20.3	3.5	54.5	63.2	1.9	.6	86.2	92.8	13.7	69.5	2.4	51.5
7.9	.8	39.0	7.6	99-5	110.2	5.9	2.5	144.3	176.6	97.5	124.4	4.2	89.7
0.2	25.8	1,284.6	223.5	3,320.7	3,720.3	218.6	83.2	4,869.0	5,805.9	2,756.3	4,145.5	141.6	3,985.7
4.9	.6	29.9	5.2	77.2	86.5	5.1	1.9	113.2	135.0	65.6	96.4	3+3	92.7

Uinta River at Fort Duchesne (histor- ical) 21	Yellowstone Creek below Swift Creek near Altonah (histor- ical) 22	Hell Canyon at Strawberry squeduct (histor- ical) _23	Lake Fork below Moon Lake near Mountain Home (past mod.) 24	Green River near Jensen (histor- ical) 25	Green River near Oursy (histor- ical) 26	Year
190.9 217.0 165.2 38.6 36.7 52.2 70.7 76.6 177.3 9.0 23.6 9.0 20.0 57.7 80.2 120.4 94.9 27.5 149.4 85.6 28.0 26.7 11.6 26.4 12.5 12.5 12.5 12.5 14.5 15.5 14	$\begin{array}{c} 103.0\\ 102.0\\ 198.9\\ 162.4\\ 63.5\\ 77.8\\ 86.9\\ 119.5\\ 114.6\\ 53.7\\ 107.5\\ 114.6\\ 53.7\\ 107.5\\ $	4 374 28 9 278 976 2 264 788 0 5 0 66 0 1 26 6 6 4 2 8 9 5 6 5 2 2 2 4 5 4 5 1 5 2 1 2 2 3 6 4 788 0 5 0 6 6 0 1 26 6 6 8 6 4 2 5 6	98.9 156.2 164.0 145.8 63.8 87.8 81.6 199.7 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.5	4,057 3,060 3,408 4,522 2,492 2,056 2,074 3,404	3,982.5 4,825.9 5,461.3 4,718.5 6,424.6 3,399.3 2,664.7 2,817.8	1920 21 22 24 1925 26 27 29 29 1931 32 334 1935 37 39 1941 42 434 1945 46 47 48 9 1951 54 55 55 55 55 55
54.9 70.8 14.4 17.0 13.7 97.5	93.0 100.7 68.0 65.3 69.5 124.4	3.0 3.5 2.2 2.4 4.2	92.9 90.8 68.7 68.8 51.5 89.7	4,377 3,156 2,194 2,392	5,592.7 4,338.5 2,811.9 3,115.8 2,087.9 5,789.3	57 58 59 1960 61 62
2,756.3 65.6	4 ,1 45.5 96.4	141.6 3.3	3,985.7 92.7	44,962 3,212	58,030.7 4,145.0	Total Average

						ogical . eather		6					
Weather					M	ean tem	perature	e (°F)					
Station	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Vernal	15.4	22.1	34.2	45.9	54.6	61.9	69.5	67.2	59.4	47.9	32.6	21.4	44.3
Roosevelt- Altamont	15.6	22.4	36.6	48.5	56.5	63.4	71.1	69.0	59.9	48.6	33.7	23.5	45.7
Duchesne	17.0	23.0	35.0	46.0	54.0	62.0	69.0	67.0	59.0	48.0	32.0	22.0	45.0

Weather					Mea	in preci	ipitati	on (incl	ies)				
Station	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
Vernal	0.55	0.49	0.65	0.93	0.73	0.72	0.54	0.80	0,67	0.88	0.50	0.76	8.22
Roosevelt- Altamont	0.50	0.36	0.52	0.59	0.49	0.72	0.34	1.01	0.58	0.91	0.50	0.63	7.15
Duchesne	0.58	0.54	0.73	0.61	0.87	0.81	0.97	1.27	0.84	0.97	0.42	0.67	9.28

··· · · ····	G	rowing season		· · · · · · · · · · · · · · · · · · ·	Frost-free period	
Weather			Nc. of			No. of
Station	From	To	days	From	To	days
Vernal	April 21	October 22	184	May 29	September 23	119
Roosevelt- Altamont	April 19	October 12	176	May 16	September 29	136
Duchesne	April 28	October 9	164	<u>May 25</u>	September 22	120

	Cropping pt	tterns	
	Uinta Ba		
		Percent of tota	al
	- · · ·	Roosevelt-	
Crop	Vernal	Altamont	Duchesne
Alfelfa	37	45	39
Pasture	26	35	41
Corn	9	5	2
Small grains	28	15	18
Total	100	100	100

Consumptive Use

Consumptive use is defined as the annual quantity of water in acrefeet per acre absorbed by the crops and transpired or used directly in the building of plant tissue together with that evaporated from the soil. It includes the water from all sources including precipitation, irrigation, and ground water. The Lowry-Johnson method was used in determining the length of the growing season, and the consumptive use was determined by use of the Blaney-Criddle method.

In estimating the amount of water that would be supplied by precipitation, consideration was given to the effectiveness of single storms, carryover of winter precipitation in the form of soil moisture, and effective growing season precipitation. A conservative estimate of the net effective precipitation was considered as being 90 percent of the average precipitation occurring in the 10 driest growing seasons during the period of study.

Consumptive use water requirements minus effective precipitation gives the net amount of irrigation water that must be supplied to the crops by irrigation.

The average annual consumptive use, effective precipitation, and irrigation requirements are shown for each area in the table on page 36.

Farm Delivery Requirement

The farm delivery requirement is the amount of water consumptively used on the farm plus any water lost by seepage from farm ditches, deep percolation, and surface runoff. In general, it was estimated that the irrigation efficiencies would vary by land class as follows.

	Farm irrigation
Land	efficiency
class	(percent)
1	60
2	55
3	50

Uin	ta Basin		
	Duchesne	Vernal	Roosevelt- Altamont
		irement (acre- productive ad	
Consumptive use requirement	2.17	1,87	2,02
Effective precipitation	•22	.20	.20
Irrigation requirement	1.95	1.67	1.82
	(Based	on irrigable	
Irrigation requirement	1.85	1.59	1.73
Farm losses	2/2.15	1,29	1.30
Farm delivery requirement		2,88	3.03
Conveyance loss	<u>2</u> /	.63	.62
Diversion requirement	3/4.00	4/3.51	<u>5</u> /3.65
		diversion rec re-feet per a	
April	0.04	0.17	0.12
May	•52	. 60	•50
June	, 92	.71	• 80
July	1.00	.81	•93
August	.8 8	.63	.70
September	•52	.42	•50
October	.12	•17	.10
Total	4.00	3.51	3.65

Summary of irrigation diversion requirements

irrigable area.

2/ Total loss includes farm irrigation and conveyance losses.
 3/ Measured at Duchesne River.
 4/ Measured at Steinaker Reservoir.
 5/ Measured at Moon Lake.

Class 6W lands were not assigned an irrigation efficiency for project study because they will receive only their proportionate share of the natural streamflow under existing water rights and will not receive water from the project.

The weighted farm irrigation losses and farm delivery requirements are shown by areas in the table on page 36.

Diversion Requirements

Diversion requirements for a given area are influenced by the efficiency of the conveyance system. Conveyance losses occur in transit from the source of water supply to the farm headgate. They are comprised of evaporation from the canal water surface, transpiration by vegetation along the canal banks, seepage, and operational waste.

Seepage losses depend upon the wetted area, head, permeability of the soils traversed by the canal, and the length of the canal. The seepage losses may be estimated by using the Moritz Formula (S = 0.2C /Q/V) in which S is the loss in second-feet per mile of canal, Q is the discharge in second-feet, V is the velocity of flow in feet per second, and C is the depth of water in feet lost through the wetted area in 24 hours. The table on page 36 summarizes the estimated conveyance loss for each area in the Uinta Basin.

The average annual diversion requirements at appropriate points of diversion, based on irrigable acres for each area, are also summarized in the table on page 36.

Reservoir Evaporation Losses

To determine the net water available for project use, reservoir evaporation losses were determined for the proposed Starvation and Lake Fork Reservoirs and the existing Big Sand Wash and Moon Lake Reservoirs. Evaporation rates found at Utah Lake were applied to the Starvation Reservoir after adjustments were made for differences in climatological data. Big Sand Wash Reservoir evaporation rates were assumed to be the same as those at the Starvation site. The evaporation rates of Moon Lake Reservoir were measured for the summer months and estimated for the winter months. Evaporation rates at the Lake Fork Reservoir site were assumed to be the same as at Moon Lake Reservoir.

The table on the following page is a summary of the estimated evaporation rates at Moon Lake Reservoir and Big Sand Wash Reservoir.

	naporation races	
	<u>Unitacre-feet per ac</u>	ге)
	Moon Lake	Big Sand Wash
Month	Reservoir	Reservoir
October	0.19	0.21
November	.07	•08
December	.01	.02
January	,01	.02
February	,01	.03
March	.06	•1 ⁴
April	.15	, 30
May	.34	* ^{1†} 1 [†]
June	.41	•53
July	.45	•58
August	.41	•52
September	.33	.39
Total	2,44	3,26

Evaporation rates

Operation studies

Preliminary operation studies were made of the Uinta Basin streams east of Rock Creek to determine the approximate amount of runoff which may be available for diversion from the Uinta Basin. These studies are summarized in the table on the following page. Criteria upon which the studies were based are listed below. It is realized these criteria may not be entirely valid due to economic or other factors which remain to be investigated in detail.

1. Flaming Gorge aqueduct will extend from Flaming Gorge Reservoir southward to Brush Creek, then westward to the Blue Bench north of Duchesne. Its location will be approximately the same as found in the 1951 report of the Central Utah project.

2. Land lying below the Flaming Gorge aqueduct will be supplied entirely from stream gains below the Strawberry aqueduct and from Flaming Gorge aqueduct.

3. Land lying either above the Flaming Gorge aqueduct or inaccessible to the aqueduct will be supplied from stream gains and bypasses from Strawberry aqueduct. The table on page 40 is a summary of these Uinta Basin lands and estimates of bypasses thereto.

(U	nit1,000 acr			
	Average a		for period o	f study
		(1920-)		Detidented
Stream	Flow at Strawberry aqueduct	Spills1/	Estimated bypass to irriga- tion2/	divert- ible flow
Little Brush Creek	3/ 10.9	1.6	1.0	8.3
Brush Creek	3/ 12.1	1.8	1.0	9.3
Ashley Creek	3/ 26.9	4.0	_, .	22.9
Cow Hollow	4 / .8	.1		.7
Black Canyon	4/ 2.0	•3		1.7
East Fork of Dry Fork	4/ 6.4	1.0		5.4
Three tributaries of East Fork of Dry Fork North Fork of Dry Fork Flume Mill	4/ 7.1 4/ 4.9 4/ 6	1.1 .7 .1		6.0 4.2 •5
Dry Fork	2/ 29.9	4.5	5.0	20,4
Paradise Creek	4 / 5.2	•8		4.4
Whiterocks River	₽J 77.2	п.6	2.4	63.2
Farm Creek	4/ 5.1	•8		4.3
Clover Creek	<u>4</u> / 1.9	•3		1.6
Uinta River	¥/113.1	16.9	5.3	90.9
Yellowstone Creek	4/ 96.4	14.5	<u>ት</u> ት•0	37+9
Hell Canyon	5.3	•5	0	2.8
Lake Fork	3/ 92.7	13.9	5/45.3	33+5
Total	496.5	74.5	104.0	318.0

Water supply at Strawberry aqueduct under ultimate phase

1/ Estimated to be 15 percent of the flow based on studies for initial phase of Strawberry aqueduct.

2/ A portion of this requirement would likely be able to be supplied from spills and could be reduced by that amount.

3/ Past modified. 4/ Ristorical.

Historical.

5% Includes 1,500 acre-feet for evaporation from Lake Fork Reservoir.

39

	MUU NULTUN DT	T TOTAL ACT NO		
		Annual	Total	
		require-	annual	1,000
	Irrigable	ment	requirement	acre-feet
	area .	(acre-feet	(acre~	(rounded
Stream	(acres) <u>1</u> /	per acre)	feet)	to tenth)
Little Brush Creek	185	3.51	649	0.6
Dry Fork	868	3.51	3,047	2/5.4
Whiterocks River	644	3.65	2,351	- 2.4
Uinta River	1,440	3.65	5,256	5.3
Lake Fork and Yellow-	18,900	3.65	68,985	87.8
stone Creek	6,730	2.80	18,844	
Total bypass			-	101.5
Noto: Noithon Bruch non	Achlow Grooks	will moduling	at nosmflot	himecoos

Estimated streamflow bypassed at Strawberry aqueduct to lands not served by Flaming Gorge aqueduct

Note: Neither Brush nor Ashley Creeks will require streamflow bypasses at Strawberry aqueduct.

1/ All are class 1, 2, or 3 lands except for 6,730 acres of 6W Lake Fork area lands.

2/ Estimate includes Mosby Canal diversions of about 2,400 acre-feet annually from Dry Fork to Deep Creek area lands.

4. Spills at Strawberry aqueduct were estimated from studies made for the Bonneville unit, initial phase.

Water rights

Duchesne River

President Abraham Lincoln issued an executive order on October 3, 1861, establishing an Indian reservation in the Uinta Basin covering the drainage of the Duchesne River and its tributaries. Subsequent to the establishment of the reservation many acts and executive orders were made that affected the original reservation. The Indians had undisturbed possession of the reservation for some 40 years until the act of 1902 provided for the allotment of arable reservation lands to the public domain. In 1905 the United States Government opened the reservation to non-Indian land filings of 160 acres each, and as a result of this action Indian and non-Indian lands are everywhere interspersed. Some of the Indian lands also were later acquired by non-Indians. The original Indian lands, however, retained the original priority of their water rights regardless of present ownership. This priority dates back to October 3, 1861, the date the reservation was established.

The non-Indian settlers acquired secondary water rights under Utah State law by application to the State Engineer. The filing of water right applications began immediately after the opening of the reservation in 1905 and has continued to the present time. As a result, the rivers have been very greatly overappropriated, and the applications with late priority

provide little or no water after the high runoff except in the cases where reservoirs have been constructed under their junior rights. The Indian diversions, in general, are located in the lower reaches of the rivers and the diversions of water by junior rights upstream soon left the Indian canals without sufficient water. As early as 1913 government officials realized a water adjudication was necessary on the Lake Fork, Whiterocks, and Uinta Rivers if sufficient water for the Indian land would be available for the lower diversions.

The Indians acquired first right to the use of the Duchesne River water, not only by diligence claims but also by applications to the Utah State Engineer beginning in 1905. The abstract attached to this report lists nine diligence claims for water to be used on 190 acres of Indian land. This abstract also shows that the first 17 perfected water right applications are owned by the Indians and cover 294.07 second-feet of water from the Duchesne River for use on 18,287.38 acres of land. This is ample evidence of the Indians' first right to the Duchesne River water.

An adjudication suit covering the water rights of Lake Fork, Uinta, and Whiterocks Rivers was started in the Federal Court in 1914. The basis for the claims by the Government in this suit was the decision in the United States Supreme Court known as the "Winters Decision" (Winters vs. United States--207 U. S. 564, 1908). The adjudication suit of Lake Fork, Uinta, and Whiterocks Rivers was bitterly opposed by the defendents and was continually in the courts until 1923, when, by stipulation, the District Court of the United States in and for the District of Utah established two decrees (Docket 4427 and 4418). These decrees gave the Uintah Indian Irrigation project lands the first right to all of the water in the three rivers covered by the decrees as it was thought then that the Duchesne River would supply ample water for all irrigation demands.

Docket 4427 was made for the Uinta River and its tributaries and guarantees the Indians the first and exclusive right under a priority that dates to October 3, 1861, to divert from the Uinta River and its tributaries into their canals a certain quantity of water for irrigation, domestic, culinary, and stockraising uses. The total land covered by the decree was 34,700.09 acres, and the permitted diversion requirement was 104,100.27 acre-feet or 498.88 second-feet. The decree limited the use to ". . . that which is needed for economical and beneficial use . . " and defined the irrigation period from March 1 to November 1. It further limited the irrigation use to no more than 3 acre-feet of water per year for each acre of land irrigated, and no more than one-seventieth of a second-foot of water for each acre was to be diverted from the river at any one time. For the protection of the water rights described, the decree provided for a water commissioner to be appointed from time to time. The decree was dated March 16, 1923, and signed by Judge Tillman D. Johnson.

WATER SUPPLY

Natural lakes, high in the mountains, have been developed by a number of secondary water right interests as storage reservoirs. Six reservoirs are on the Uintah and five on the Whiterocks drainage. The water impounded in these reservoirs has proven to be of considerable benefit to their owners. The following table shows the owners, the names, and the active capacities of these reservoirs.

Existing Reservoirs, Uinta River system

Stream	Applicant or Owner	Reservoir	Active capacity (acre- feet)
Uinta River	Dry Gulch Irrigation Company	Fox Lake Crescent Lake Lake Atwood Upper Chain Lake Middle Chain Lake Lower Chain Lake	1,100 200 750 470 130 <u>750</u> <u>3,400</u>
Whiterocks River	Whiterocks Irrigation Company	Paradise Park Chepeta Lake Wigwam Lake Papoose Lake Mocassin Lake	1,400 185 112 80 <u>103</u> 1,880

At the same time the court decree (Docket 4427) was made for the Uinta River, Docket 4418 was made for Lake Fork. This decree is similar to the one for the Uinta River. It states that the Indians have first right to the flow of Lake Fork and its tributaries and fixes these rights as follows.

	Acres irri-	Water permitted to be		
Name of ditch	gated under	diverted e	ach season	
<u>or canal</u>	each ditch	Acre-feet	Second-feet	
Lake Fork Extension	1,230.76	3,692.28	17.58	
Lake Fork	9,701.43	29,104.29	138.59	
Payne Lateral	493.20	1,479.60	7.05	
Red Cap	8,751.75	26,255.22	125.03	
Dry Gulch	4,871.57	14,614.71	69.60	
Uteland	22,90	68.70	•33	
Total	25,071.61	75,214.80	358.18	

Docket 4418 limits the use of water to 3 acre-feet per year per acre for beneficial use and provides for a water commissioner to be appointed for Lake Fork. The decree was also signed by Judge Johnson and dated March 16, 1923.

The secondary users have developed several natural lakes high in the mountains as storage reservoirs to improve their water supply. Seventeen

of these reservoirs are on Lake Fork tributaries. The water impounded in these reservoirs has proved to be of considerable benefit to the owners. The following table shows the owners, the names, and the active capacities of these reservoirs.

Existing reservoirs	Lake Fork River system	
Applicant		Active
or		capacity
Owner	Reservoir	acre-feet
Farnsworth Canal and Reservoir	Kidney Lake	2,500
Company	Island Lake	1,000
	Brown Duck Lake	500
	Twin Potts	3,150
Dry Gulch Irrigation Company	Clement Lake	1,200
Farmers' Irrigation Company	Five Point Lake	500
	Drift Lake	200
	Bluebell Lake	380
	Superior Lake	400
	Farmers' Lake	803
	White Miller Lake	34
	Deer Lake	205
	Water Lily Lake	334
Brigham Timothy, et al.	Upper Timothy Lake)
	Middle Timothy Lake) 520
	Lower Timothy Lake)
Hartman and Daniels	Milk Lake	184

During the investigation of the Moon Lake project, the non-Indian irrigation companies diverting water from Lake Fork and two companies diverting from the Uinta River formulated an agreement known as the Equalization Agreement, dated February 1935. By this agreement the numerous secondary water rights were evaluated, and methods of equalizing the distribution of water to each acre of land were agreed upon. The water rights owned by the participating companies were assigned to the Moon Lake Water Users' Association. Companies signing the agreement are listed as follows.

> Dry Gulch Irrigation Company Lake Fork Irrigation Company Farmers' Irrigation Company Farnsworth Canal and Reservpor Company Lake Fork Western Irrigation Company South Boneta Irrigation Company Uteland Ditch Company T. N. Dodd Irrigation Company Monarch Canal and Irrigation Company

The Moon Lake project was constructed in 1938 by the Bureau of Reclamation to supplement the non-Indian water supply available under

the secondary water rights. It provides supplemental irrigation water to approximately 75,256 acres of land in Duchesne and Uintah Counties. The project water supply is provided by Lake Fork and its principal tributary, Yellowstone Creek, and by the Duchesne River. Moon Lake Reservoir with 35,800 acre-feet of active capacity stores surplus spring flows of Lake Fork for release during the irrigation season to canals diverting from that river. The Yellowstone Feeder Canal, with a capacity of 88 second-feet, conveys Yellowstone Creek flows that are surplus to Indian rights to project land in the vicinity of Neola in the Uinta River drainage. Additional Lake Fork water is made available to Moon Lake project land by the Midview Exchange. Indian lands in the exchange area are supplied water from Duchesne River, and the Lake Fork water originally diverted to this area is used upstream on Moon Lake project lands.

Duchesne River water is delivered to the Midview Exchange area through the Duchesne Feeder Canal which diverts from the river about 5 miles downstream from Duchesne, Utah. The canal was originally constructed by private water users to irrigate about 1,500 acres having a water right from Duchesne River and was enlarged under the Moon Leke project. The enlarged canal, with an initial capacity of 200 secondfeet, conveys the water 7 miles to a natural drainage which diverts a portion of the flow to the Midview Reservoir with an active capacity of 5,700 acre-feet. The remaining water flows into the Red Cap lateral which is about 8 miles long and serves Indian land originally irrigated from Lake Fork by the Red Cap Canal of the Uintah Indian Irrigation project. Midview lateral, 9 miles long and with an 80-second-foot capacity, delivers storage water from Midview Reservoir to Indian lands under the U. S. Dry Gulch Canal which originally diverted from Lake Fork.

Water rights for the Midview Exchange area include application No. 7781-a which covers the diversion of 175 second-feet from the Duchesne River for direct use in the area. Application No. 9104-a covers diversions from the Duchesne River of 11,570 acre-feet for storage in Midview Reservoir. The latter application allows the reservoir to be filled twice each year, once during the winter for early irrigation season use and again during the high spring flow. The above applications provide water for supplying 10,000 acres of land under the Hidview Exchange.

The Midview Exchange is presently being operated on year-by-year agreements between the Moon Lake Water Users' Association and the Ute Indian Tribe. Negotiations leading to a permanent agreement whereby the operation and maintenance of the Midview Exchange would be assumed by the Ute Tribe have not been successful. Thus, the Midview Exchange was included in the Central Utah project plan in order to protect the water rights of the Moon Lake project. When the irrigable Indian lands with primary water rights on Duchesne River are fully developed, they will require part of the water presently being diverted to the Midview Exchange area. With the resulting decrease in exchange water and without Central Utah project the Indian lands in the Midview area would then require Lake

Fork water in lieu of the Duchesne River water, and the resulting shortages would accrue to the Moon Lake project lends.

Under the proposed Bonneville unit development the Midview Exchange lands will receive water from Starvation Reservoir, eliminating the necessity of recalling Lake Fork water to supply these lands. The Bonneville unit of the Central Utah project will not increase the water supply to the Moon Lake project as compared to the present supply, but it will insure the continued delivery of the present supply as development of the Indian lands on the Duchesne River proceeds. A diversion requirement of 4 acre-feet per acre was allowed at the Duchesne Feeder Canal heading for 10,000 acres of Midview Exchange land. An inventory of land resources indicates there is a maximum of about 7,500 acres of irrigable Indian land in the Midview Exchange area. The Indians are presently considering purchasing some non-Indian water right land now being served from the U. S. Dry Gulch Canal, thereby bringing the full 10,000 acres into irrigation under the Midview Exchange.

The Moon Lake Water Users' Association, with the help of the Utah Water and Power Board, has constructed the Big Sand Wash Dam on Big Sand Wash near Upalco, Utah. The reservoir has a total capacity of about 12,000 acre-feet and an active capacity of 10,800 acre-feet. Application No. 17978, owned by the Hoon Lake Water Users' Association, appropriates the water for the Big Sand Wash Dam. This application covers 300 secondfeet of water from Lake Fork and 30 second-feet from Sand Wash.

Consistent with the objectives of the Colorado River Compact, dated November 24, 1922, the Upper Colorado River Basin Compact of October 11, 1948, and the Colorado River Storage Project Act of April 6, 1956, which included the Flaming Gorge Dam and Reservoir as a unit and the Central Utah project as a participating project, Application No. 30414 to appropriate water from the Green River was filed with the State Engineer by the Bureau of Reclamation on August 7, 1958. This application covers the appropriation of 8,000 second-feet and 4,000,000 acre-feet of water from the Green River. As part of the water supply for the Central Utah project, this application proposes to divert 500,000 acre-feet of water annually, as needed, from Flaming Gorge Reservoir into an aqueduct to provide water for various purposes to lands and communities in the Uinta Basin and to replace water diverted from the Uinta Basin through the proposed Strawberry aqueduct for use in the Bonneville Basin. Application No. 30414 was approved by the State Engineer October 6, 1959.

On September 4, 1946, the Bureau of Reclamation filed Application No. 18043 with the State Engineer covering the appropriation of water for both the initial and ultimate phases of the Central Utah project. The application sought to appropriate 800,000 acre-feet of surplus water from lakes, streams, and proposed reservoirs in the Uinta Basin from Brush Creek on the east to Stravberry River on the west. This application covered all of the reservoirs and points of diversion along the

45

collection system in the Uinta Basin and the distribution system and lands in the Bonneville Basin. Strawberry Reservoir was to be enlarged from its present active capacity of 270,000 acre-feet to an active capacity of 1,370,000 acre-feet. Approval of Application No. 18043 by the State Engineer was delayed at the request of the Bureau of Reclamation pending formulation of the project plan.

Shortly after Application No. 18043 was filed, the Governor of Utah withdrew the Uinta Basin streams, tributary to the Green River, from further appropriation of more than 5 second-feet. This withdrawal proclamation was made December 19, 1946. Since the withdrawal order was made, a great number of water right filings have been made on the Uinta Basin streams for flows of 5 second-feet or less. These applications have priority dates that are after Application No. 18043 and are unapproved. These applications are included in the abstract of water rights in the supporting data to this report in the Central Utah Projects Office in Provo, Utah.

An adjudication proceeding intended to define all surface and ground water rights in the Uinta Basin in Utah was ordered March 20, 1956, by the Fourth Judicial District Court in and for Duchesne County in Civil Action No. 3070. The area comprising this general determination proceeding included all of the water sources, both surface and underground, within the drainage area of the Green River and all of its tributaries below the confluence of Pot Creek and above the confluence of the Green River with the Colorado River but excluding therefrom the drainage area of the San Rafael River.

Pursuant to the court order the State Engineer has made field surveys in a major part of the Uinta Basin as a step in the preparation of his proposed determination of water rights. The adjudication has progressed very well, but it will be several years before it is completed. In the absence of an authoritative definition of water rights on the streams in the Uinta Basin, two committees have been organized to study the problems, one for the Duchesne River and one for Lake Fork and Uinta River. These committees include representatives of the Bureau of Indian Affairs, Ute Indian Tribe, Upper Colorado River Commission, Utah Water and Power Board, Bureau of Reclamation, and non-Indian land owners in the respective areas. The Duchesne River Area Study Committee began May 29, 1963. One of the objectives of the committees was to make appropriate conclusions and recommendations pertaining to optimum Central Utah project development within the limits of available water supplies.

Water rights of Duchesne River are discussed in the "Duchesne River Area Study Committee Report" of April 1962 and in the "Bonneville Unit Definite Plan Report" of August 1964. The abstract was not available at the time the Bonneville Unit Definite Flan Report was printed.

WATER SUPPLY

In its final report made in April 1962 the Duchesne River Area Study Committee concluded that Indian lands along the Duchesne River totaled 20,705 acres and that non-Indian water rights on the Duchesne River that could be accepted as having priority over rights for the Central Utah project include water for the irrigation of 32,295 acres of land in the Uinta Basin. These Uinta Basin lands were made up of 20,295 acres along the Duchesne River, including lands served by the Taylor Canal, 10,000 acres under the Midview Exchange, and 2,000 acres irrigated under applications of 5 second-feet or less with priority dates after Application No. 18043. The study committee estimated that there were 8,000 acres of land presently irrigated under the Taylor Canal.

On December 23, 1963, a study was initiated with representatives from the State Engineer's office and the Bureau of Reclamation to reevaluate and tabulate the water rights and lands along the Duchesne River. The results of this study and a comparison tabulation of the Duchesne River Area Study Committee's recommended lands are shown in the table on the following page.

As can be seen in the table the net difference of land between the two studies is 1,520 acres. This was due to 2,304 additional acres brought under cultivation recently in the Taylor Canal area and a net increase of 216 acres in the other categories. It was found in the final tabulation that about 1,061 acres of land are presently irrigated without an approved water right. In the reevaluation study 25 new water right applications were written to cover 793 acres and 10 existing applications filed during 1956 were amended to include 268 acres of this land. The 25 new applications were filed with the State Engineer by the Central Utah Water Conservancy District, and all 35 applications will be recognized ahead of the Bonneville unit water rights. The table on page 49 includes the 25 new applications for lands presently irrigated without an approved water right.

New applications were prepared for filing in lieu of seeking approval of Application 18043 in anticipation that the Uinta Basin streams would be restored to new water right filings. Units included in the new filings are Bonneville, Upalco, and Uintah. An application was also prepared for Starvation Reservoir to supplement Application 18043 in the event adequate priorities were not obtained for these new project filings. Descriptions of the new Bureau of Reclamation applications follow.

<u>Uintah unit application</u>.--The purpose of this application is to appropriate up to 100,000 acre-feet of surplus water from the following sources: Gilbert Creek which is tributary to the Uinta River (at Gilbert Creek Dam site), Shale Creek which is tributary to the Uinta River (at Burro Dam site), Uinta River (at Uinta No. 1 Dam site), unnamed fork which is tributary to West Fork of Whiterocka River (at Queant Lake Dam site), Whiterocks River (at Middle Whiterocks Dam site), Twin Cottonwood

WATER SUPPLY

CHAPTER III

		Summary of Duchesne Riv and water rights			
	<u></u>	(Unitacres)		<u> </u>	
			Duchesne		
			River Study		
			Committee's	-	
			recommended		
			acreages		
			. (used in		Differ-
		······	studies)		ence
I.		lian ownership lands	20,705	20,705	0
II.	Nor	n-Indian ownership lands			
	l.	Lands along the Duchesne River			
		(except Taylor Canal lands)			
		with water rights before Bureau			- (
		Application No. 18043	12,295	12,093	1/-202
	2.	Taylor Canal lands	8,000	10,304	7 2,304
	3.	Land along the Duchesne River)			-
		with certificated water right)			
		applications after appli-			
		cation No. 18043)		² /807	
	4.	Lands in class 1, 2, 3, and 6W }		_, ···	
		presently irrigated without			
		an approved water right (25)			
		new applications were filed			
		on this land)		793	
	5.	Other lands with elections or)	2,000	175	+418
	2+		2,000		4410
		potential elections filed)		E FO	.,
	6.	since application No. 18043		550	
	0.	Land in class 1, 2, 3, and 6W)			
		presently irrigated without)			
		an approved water right (old)			
		5 c.f.s. filings to be amended)		060	
		for these lands))	10.000	268	~
	7.	Midview Exchange lands	10,000	10,000	0
	· 1-7-	Total	53,000	55,520	+2,520
	-/	The decrease in acreage was the re	sult of abar	idoned wat	er rights

1/ The decrease in acreage was the result of abandoned water rights, Indian and non-Indian filings on same lands, and supplemental rights. 2/ Includes approximately 200 acres of land classified as 6st brush pasture land.

	priority ahead of the			
······································				Addi-
				tional
Applicatio	on		Flow	acreage
No.	Property owner	Ditch	(secft.)) (acres)
36542	Vernal Bromly	Murray White	0,05	3
		Canal		
36543	D. L. Nielson	Gray Mountain	0.09	7
36544	Mrs. L. Felter	Pahcease Canal	0,36	22
36545	Olsen Brothers	Yannawards	0,24	14
		Ditch		
36546	Hazel Hadden	Knight Ditch	0.11	7
36547	R. D. Broadhead	Broadhead	0.27	16
-		Ditch		
36548	Peatross Brothers	Gray Mountain	0.15	9
36549	T. L. Bishop	Gray Mountain	0,25	15
36550	K. J. Nielsen	Gray Mountain	0,18	11
36551	R. D. Broadhead	Jones Ditch	0.21	13
36552		Jessop Thomas	0.33	19
36553		Fabrizio Ditch	0.15	9
36554	Milvin and Ruth Broadhead	West Rock	0.23	13
		Creek Ditch		
36555	Merlin Broadhead	West Rock	0.13	8
<i>J~JJ</i>	WITTH DIOROHEBA	Creek	0.1)	~
36556	Farm Creek Irrigation Co.	Farm Creek	1.00	60
<i>J</i> 0 <i>JJ</i> 0	TALM OTEEX INIGGING CO.	Canal	1.00	~
36557	Charles Fabrizio	Turnbow Ditch	0,30	18
36558	Vernon Moon	Turnbow Ditch	0,17	10
36559	Theron H. Robb	Shanks Ditch	0.53	32
36560	Wayne and Adrienne Strong	Shanks Ditch	0.24	14
36561	Olsen Brothers	Madsen Ditch	0.55	33
36562		Rhoades Canal	0.36	22
36563	Rhoades Canal Irrigation Co. Ray and Erma Thomas	Hicken Ditch	0.34	21
36564	•	Jones Ditch	0.25	14
	Clarence and Margaret Wright			10
36565 36637	Leland and Carol Wright	Jones Ditch	0.17	
28483	Rocky Point Ditch Co.	Rocky Point	6.55	393 71
	J. Willis Moon	Private	•57	34 15
28484	Ray Thomas	Hicken Ditch	•25	15
28485	Ray D. Broadhead	Jones Ditch	.12	,7
28486	Clarence Wright	Jones Ditch	.22	13
28492	Theron Robb	Knight Ditch	•2	12
28532	Farm Creek Irr. Co.	Farm Creek Canal		50
28533	Myrthon Moon	Jessup-Thomas	•60	36
28548	Ray D. Broadhead	Broadhead Ditch	.28	17
28549	Kenneth L. Wilkinson	Private	.17	10
<u>28581</u>	Rocky Point Ditch Co.	Rocky Pt. Ditch	1.13	74

Recent water right applications with priority ahead of the Bonneville unit

Wash which is tributary to Uinta River (at Bochalen Dam site), West Fork of Halfway Hollow which is tributary to Halfway Hollow, tributary to the Green River (at Halfway Hollow Dam site), Whiterocks River (at Ouray Valley Canal Diversion Dam), Brown Draw which is tributary to Cottonwood Creek which is tributary to Dry Gulch which is tributary to Uinta River (at Half Moon Dam site), Uinta River (at Cedarview Canal Diversion Dam), Bottle Hollow which is tributary to Uinta River (at Bottle Hollow Dam site), and Uinta River (at Indian Bench Canal Diversion Dam). Alternate reservoirs proposed for this unit are described in the application.

Water appropriated under this application will be used as a supplemental or full supply on lands within the Uintah unit area and for other incidental uses.

Mater appropriated by this application will be distributed by the existing canals and conduits to the extent possible, and new facilities will be constructed or existing features enlarged as necessary to serve the project requirements.

<u>Ultimate phase Application No. 36645.</u>-This application proposes to appropriate up to 1,400,000 acre-feet of water, including 800,000 acrefeet from Flaming Gorge Reservoir which is also covered by Application No. 30414. Under this application water from Flaming Gorge Reservoir would be released as needed into the Flaming Gorge aqueduct and from the aqueduct into the natural channels for direct irrigation and other uses within the Uinta Basin and for exchange water to replace up to 600,000 acre-feet of water diverted from lakes, streams, and proposed reservoirs along the potential Strawberry aqueduct. The application proposes uses such as domestic, municipal, irrigation, stock-watering, power, fish and wildlife, and recreational uses.

A restoration proclamation affecting all streams which drain into the Green River from the Uinta Basin including Little Brush Creek, Brush Creek, Ashley Creek, Uinta River, Yellowstone Creek, Lake Fork, Rock Creek, Duchesne River, and Strawberry River was signed by Governor George D. Clyde November 2, 1964. This proclamation was published in the Vernal Express, Uintah Basin Standard, Wasatch Wave, Salt Lake Tribune, and The Deseret News on November 19, 26, and December 3, 1964. The effective date of the proclamation was December 7, 1964.

During the publication period the Central Utah Mater Conservancy District filed the 25 new applications covering existing uses of water on 793 acres of land along the Duchesne River system not covered by other established water rights. Twenty-four of these applications seek to appropriate less than 5 second-feet of water and, therefore, were accepted and processed by the State Engineer at the time of filing on November 19, 1964. They were given filing numbers from 36542 to 36565. The twenty-fifth application covers 6.55 second-feet of water and 393 acres of land under the Rocky Point Canal. This application was one of

ten that were deposited with the State Engineer during the restoral publication period and by statute were considered at a hearing to establish their priority dates. The hearing was held in Duchesne, Utah, on December 21, 1964, and continued on December 22, 1964, in Salt Lake City, Utah.

A table showing the ten applications filed during the advertisement of the restoral order and the final order of priority assigned by the State Engineer is shown below. This order of priority is essentially in agreement with recommendations made at the hearing by the Bureau of Reclamation, Central Utah Nater Conservancy District, and others.

No. 36637	Applicant Central Utah Water Con- servancy District	Quant 6.55	<u>tity</u> c.f.s.	<u>Source</u> Duchesne River	Priority <u>assigned</u> 11 a.m. 11-19-64
36638	U. S. Bureau of Reclamation	200,000	ac-ft.	Duchesne & Strawberry Rivers (Starvation Reservoir)	12 noon 11 - 19-64
36639	U. S. Bureau of Reclamation	500 ,00 0	ac.ft.	(Bonneville unit)	12 noon 11 -1 9-64
36640	Dry Gulch Irrigation Co.	250	ac.ft.	Lake Atwood	10:30 a.m. 11-27-64
36641	Dry Gulch Irrigation Co.	400	ac.ft.	Fox Lake	10:30 a.m. 11-27-64
36642	U. S. Bureau of Reclamation	100,000	ac ft.	(Upalco unit)	11 a.m. 11-27-64
36643	Monarch Canal and Reservoir Co.	500	ac. . ft,	Dry Gulch Creek	8 a.m. 12-4-64
36644	U. S. Bureau of Reclamation	100,000	ac.ft.	(Uintah unit)	9 a.m. 12-4-64
36645	U. S. Bureau of Reclamation	1,400,000	ac-ft.	(Ultimate phase)	10 a.m. 12-4-64
36646	Uintah Power and Light Co.	96.62	c.f.s.	Uinta River	11 a.m. 12-4-64

After the State Engineer assigned the priorities the Uintah Power and Light Company filed a complaint with the District Court seeking to reverse the State Engineer's order of priorities and place the Uintah Power and Light Company's Application No. 36646 ahead of the Bureau of Reclamation's Uintah unit and ultimate phase Application Nos. 36644 and 36645.

Ashlcy Creek

The court decrees and water right applications on Ashley Creek are discussed in detail in the Vernal Unit Definite Plan Report, Appendix B, May 1957.

Dry Fork is a tributary of Ashley Creek and drains an area of about 118 square miles, most of which is located in the Ashley National Forest. The town of Dry Fork is located within this drainage area and about 12 miles northwest of Vernal. On Dry Fork about 6 miles above the town of Dry Fork is an area called the "Sinks" where most of the flow of the creek is lost into the ground.

Several attempts have been made in the past to divert water around the Sinks. The first attempt occurred in 1887 or 1888 when the pioneers living along the stream dug a ditch that skirted the Sink area. This attempt failed, however, when the diverted water disappeared into a hidden sink hole. Later, between 1894 and 1896, they tried to build a wooden flume over the Sink area. The flume leaked so badly that the water washed out the flume supports and it collapsed.

Planning for the Dry Fork project began in 1960 as a joint venture between the Soil Conservation Service and the Utah Water and Power Board. This proposed project is essentially another attempt to provide facilities to convey water past the Sinks area, along with a reservoir system in the headwaters to regulate the flows and a series of improvements along the creek to reduce and control the occasional flood threat. The project would be constructed under the following water right applications.

Direct flow Application No. 9126 is presently held by the Utah Water and Power Board, and it proposes to appropriate 75 second-feet of water from Dry Fork of Ashley Creek. The point of diversion is in the vicinity of the "Dry Fork above Sinks" gaging station. It is planned to use this application for constructing the Dry Fork Diversion Dem and the Dry Fork branch of the Dry Fork pipeline.

Storage rights that could be used for the proposed reservoirs of the Dry Fork project are Application Nos. 26535, 32742, and 8755. Application No. 26535 proposes to appropriate 5 second-feet and 250 acre-feet of water from the East Fork of Dry Fork for storage in Brownies Park Reservoir. The Uintah Water Conservancy District holds Application No. 32742 which proposes to store an additional 300 acre-feet in the same reservoir. Application No. 8755 was filed by the Ashley Valley Reservoir Company and proposes to store water in seven separate reservoirs including Chimney Rock Lake, Charlies Park, and Mill Fork. It proposes to appropriate 14 second-feet and 1,425 acre-feet. The Bureau of Reclamation has no objection to this project provided it does not reduce the water supply and consequently the repayment ability of the Vernal unit of Central Utah project.

Brush Creek

Two court decrees granting specific rights to the full and free use of specified amounts of the natural flows of Brush Creek have been given by the Fourth Judicial District Court of the State of Utah in and

for Uintah County. The first decree, dated August 12, 1896, divided the natural flows of Brush Creek between four groups of water users. Division of natural flows was based upon the number of acres each group had under cultivation. This division, shown below, is still in effect.

Decree of August 12, 1896	
	Percent
Owner	of flow
Burns Bench Canal	50
Burton ditch	22
Murray ditch	15
Small ditches above Sunshine Canal	<u>13</u>
Total	100

The second decree, dated November 13, 1930, granted to several individuals specified amounts of natural flow from Brush and Little Brush Creeks totaling 3.071 second-feet. This decree also granted a share of the excess flows of the two streams for irrigation purposes. The decree also provided sufficient water to the individuals for stockwatering and domestic purposes.

Since March 29, 1956, when the State Engineer was ordered by the Fourth Judicial District Court to make a general determination of the water rights of streams in the Uinta Basin, the hydrographic surveys of Brush Creek and its tributaries have been completed and the State Engineer certified to the courts on January 15, 1960, his proposed determination of all the rights to the use of water within the area of Brush Creek. At that time he submitted his "Priority Schedule of the Irrigation Water Rights on Brush Creek and Tributaries in Uintah County." This priority schedule has been developed into an abstract of water rights which is included in the supporting data in the Central Utah Projects Office.

The Bureau of Reclamation has water right Application No. 17558 to appropriate water from Brush Creek. The water appropriated in this application is for the supplemental irrigation of 3,500 acres of presently irrigated land and 1,500 acres of full service land included in the area of the Jensen unit. The application seeks to appropriate 30 second-feet and 10,000 acre-feet for direct flow use on the lands of the Jensen unit and for storage in a reservoir proposed at the Tyzack Dam site. Water stored in Tyzack Reservoir would be released at such times and amounts needed to supplement the natural flow of Brush Creek. Application No. 17558 has a priority date of April 23, 1946, and it was approved March 17, 1961.

An alternative plan for the Jensen unit would involve the pumping of water directly from the Green River to the Lands described above. This could be accomplished by use of Application No. 30415 which is owned by the United States. The purpose of this application is to appropriate 50 second-feet of water to be pumped from the Green River into the existing Burns Bench and Murray Canals. This water would be used in exchange for water from Brush Creek which would be diverted into upper canals. Application No. 30415 has a priority date of August 7, 1958, and it was approved April 3, 1961.

Sevier River Drainage

The Sevier River is the longest river found entirely within the State of Utah. It rises in the south-central part of the State and flows generally northward for about 150 miles, then turns southwestward for about 60 miles and terminates in Sevier Lake. Since man came to the area most of the water is consumptively used on lands along the river, and very little water reaches the now dry Sevier Lake.

It is physically possible to convey project water by gravity into the lower Sevier River to supply land in the vicinity of the city of Delta, Utah. Exchanges could then be made to furnish a better water supply to the area upstream on the Sevier River.

Years of relatively low runoff during the past two decades combined with an increasing population are causing keen competition for the available water supply within the basin. This has resulted in the establishment of Sevier River Study Committee composed of water users'organizations and Government agencies. This committee is working toward increasing the water supply from existing sources, reducing losses, improving the efficiency of use, and obtaining additional water from sources outside the basin. The committee is endeavoring to organize a water conservancy district to continue this work and provide a higher degree of permanency than the present organization affords. Although not yet available, basic data obtained hy the committee should be available to the Bureau of Reclamation at an early date.

Water resources of the San Pitch River, a major tributary of the Sevier River, are reported in greater detail in the basin-type report of the Price and San Pitch River Basins, December 1964, prepared by the Bureau of Reclamation.

Water resources

Runoff Records

The U. S. Geological Survey has maintained streamflow gaging stations at a number of locations within the Sevier River drainage including the San Pitch River Basin. The table on the following page summarizes the streamflow records of each of the gaging stations, and the location of the stations is shown on the map on page 56. Monthly streamflow and canal diversion records are included in the supporting data.

		(Unit: 1000 acre-fee				
	Drainage aréa		Average recorded		al runoff	
Gaging station	(sq.mi.)	Period of record /	flow	Average ² /	Year	
Sevier River and its tributaries						
Sevier River at Hatch	340	1912-28, 1940-62	94.7	83.9	1960	
Sevier River near Circleville	950	1913-22, 1924, 1925-27 (fragmentary), 1950-62	112.2	101.1	1956	
Sevier River near Kingston	1,110	1915-62	94.6	89.2	1960	
Antimony Creek near Antimony	26	1947-48, 1958-62	16.2	19.6	1959-6	
East Fork of Sevier River near Kingston	1,260	1914-62	59.5	55.5	1934	
Sevier River below Fiute Dam near Marysvale	2,440	1911-12 (fragmentary),	161.7	150.3	1956	
Scorer Wiver percon Linke Daw year Marysvare	2,440	1913-62	,		1990	
Sevier River above Clear Creek near Sevier	2,700	1912-16, 1940-55	186.0	174.2	1957	
Clear Creek at Sevier	169	1913-19, 1934-37 (fragmen- tary), 1938-39, 1941-57	21.7	20.8	1951	
Clear Creek above diversions near Sevier	164	1958-62	16.9	-	-	
Sevier River at Sevier	2,850	1918-29	244.5	198.6	1956	
Sevier River near Sigurd	3,340	1912 (fragmentary), 1915-62	70.8	65.1	1954	
Sevier River below Vermillion Dam	5,545	1934-61	21.7	21.7	1951	
Salina Creek at Salina	298	1914-17 (fragmentary), 1918-19, 1943-55	14.0	16.8	1961	
Sevier River below San Pitch River near Gunnison	4,880	1913-62	163.4	151.6	1935	
Sevier River near Juab	5,120	1912-62	168.4	153.7	1961	
Sevier River near Lynndyl	6,270	1912-02 1915-19, 1943-62	142.3	131.2	1961	
San Pitch River Basin	0,210	1919-19, 1943-02	142.3	131.5	1901	
Pleasant Creek near Mount Pleasant	16		12.0		1961	
	-10 10	1955-62		-	1961	
Twin Creek near Mount Pleasant	¢	1955-62	5.9	-		
Ephraim Creek near Ephraim	-	1941-62	18.0	-	1959	
Twelve Mile Creek near Mayfield	60	1960-62	19.6	-	-	
San Pitch River near Fairview (USBR)	-	1954 - 573/	12.8	-	1954	
San Pitch River near Mount Pleasant (USBR)	-	1954-57 <u>3</u> /	7+3	-	1954	
San Pitch River near Moroni (USBR)	-	1954-57 <u>3</u> /	12.9	-	1956	
San Pítch River at Moroni (USBR)	*	1954-57 <u>3</u> /,	7.7	-	1956	
San Pitch River near Chester (USBR)	-	1954-57 <u>3</u> /	7.6	-	1956	
Transmountain diversions from Colorado River Basin						
Fairview ditch near Fairview	_	1950-62	1,4	-	1961	
Candland ditch near Mount Pleasant	_	1950-58	0.2		1955	
Coal Fork ditch near Mount Pleasant	-	1950-58	0.3	_	2958	
Twin Creek tunnel near Mount Pleasant	-	1950-58	0.2	-	1953	
	-		2.0	-		
Spring City tunnel near Spring City	-	1950-62		-	1 9 59	
Black Canyon ditch near Spring City	-	1950-58	0.3	-	1953	
Cedar Creek tunnel near Spring City	-	1950-58	0.4	-	1954	
Reeder ditch near Spring City	-	1950-58	0.3	-	1953	
John August ditch near Ephraim	-	1950-58	0.2	-	1950	
Madsen ditch near Ephraim	-	1950-58	0.0	-	1950, 1955,	
Ephraim tunnel near Ephraim	-	1950-62	3.4	-	1959	
Larsen tunnel near Ephraim	-	1950-58	1.1		1954	
Horseshoe tunnel near Ephraim	-	1950-58	0.6	-	1954	
Horseshoe Additer Heat, Philleru	_	1970-70		-	÷7/7	

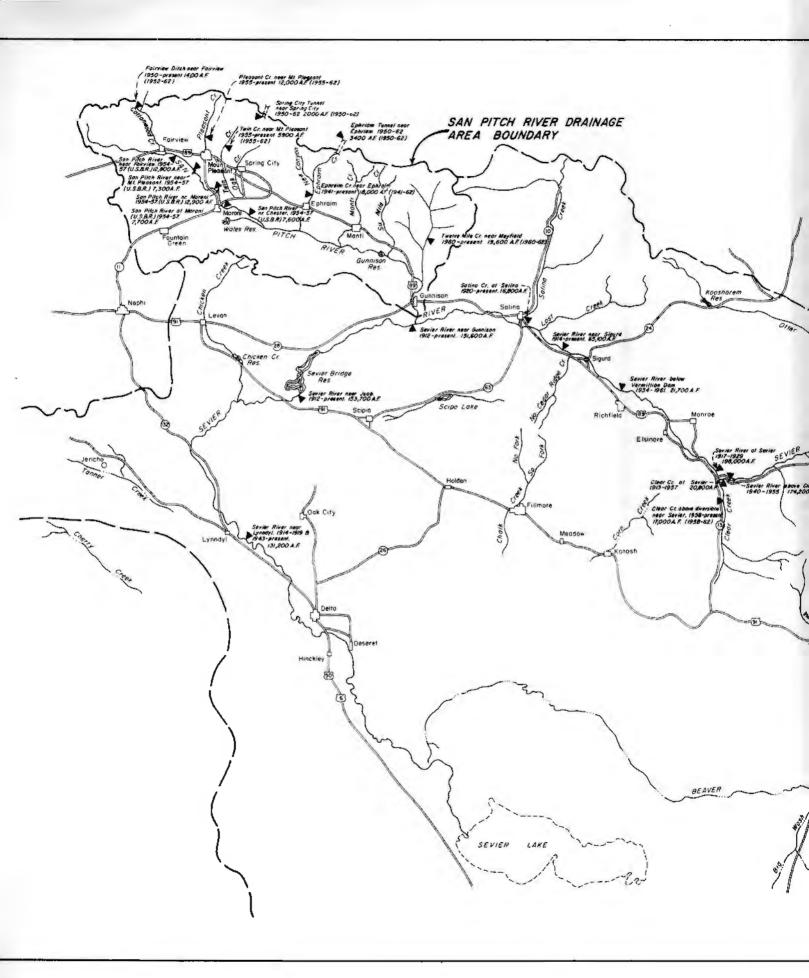
Summary of stream gaging data - Sevier River Basin (Unit: 1000 acre-feet)

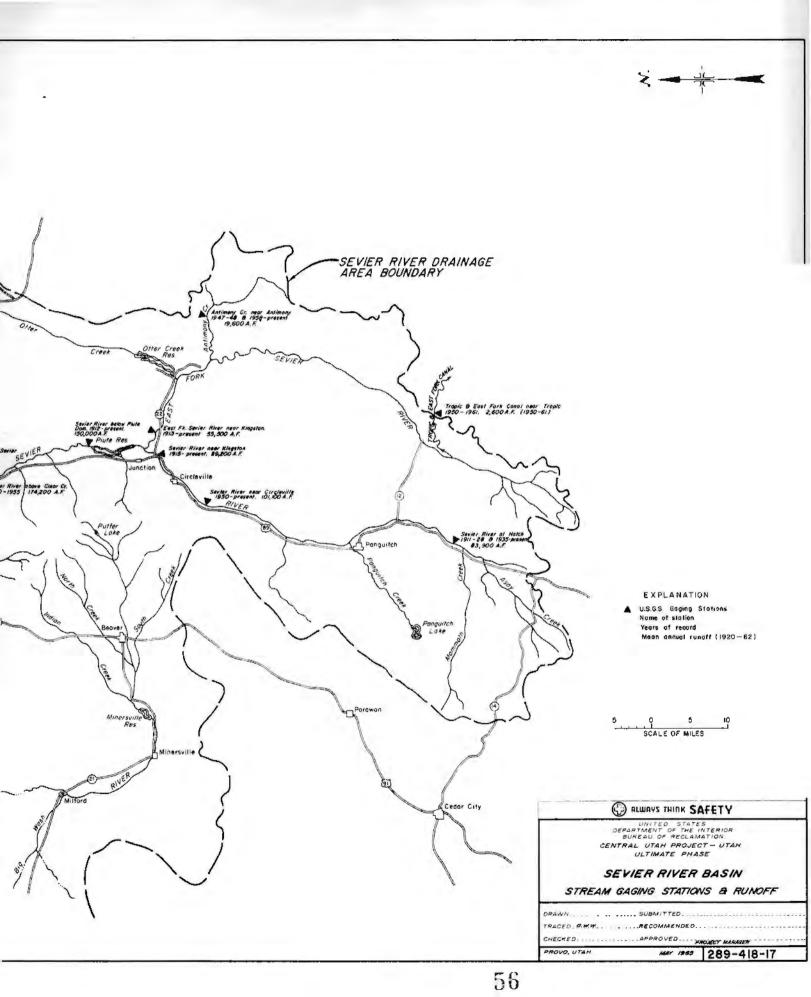
1/ Water year; does not include records after 1962.

2/ Historical flow.
3/ No records are as No records are available for winter months, November-February.

Note: Historical flow is the flow actually experienced at a gaging station or point of measurement. It is the total runoff of measurement as influenced by nature and the activities of man. It may be recorded or estimated. Past modified flow is the historical and/or natural flow corrected to show for the period of study the man-made develop of the period of study.

Present modified flow is the historical and/or natural flow corrected to show the effect of the present man-made develo period of study.


ded ** .2 .6 .2 .5 .7	Average ² / 83.9 101.1 89.2 19.6 55.5 150.3	Mini Year 1960 1956 1960 1959-60	mum Quantity 37.8 42.0 36.8	Year 1922 1922	Quantity 226.6 280.9
.7 .2 .6 .2 .5 .7	83.9 101.1 89.2 19.6 55.5	1960 1956 1960 1959-60	37.8 42.0	1922	226,6
.6 .2 .5 .7	101.1 89.2 19.6 55.5	1956 1960 1959-60	42.0		
.6 .2 .5 .7	101.1 89.2 19.6 55.5	1956 1960 1959-60	42.0		
.6 .2 .5 .7	89.2 19.6 55.5	1960 1959-60		1922	200.9
.2 .5 .7	19.6 55.5	1959-60	36.8		
•5 • 7	55.5			1922	259.7
•7			12.2	1922	36.7
	150.3	1934	27.3	1922	145.9
~	0.001	1956	72.7	1922	411.9
.0	174.2	1957	89.6	1922	462.5
•7	20,8	1951	6.6	1952	35.9
.9	-	-	-	-	-
-5	198.6	1956	111.1	1922	489.8
.8	65.1	1954	30.5	1922	306.0
.7	21.7	1951	1.4	1942	83.0
.0	16.8	1961	2.1	1922	61,2
.4	151.6	1935	62.6	1922	455.6
.4	153.7	1961	68.2	1923	435.l
•3	131.2	1961	74.2	1923	305.5
.0	-	1961	7.9	1957	16.1
•9	-	1961	4.1	1957	8.8
.0	-	1959	9.0	1962	28.4
.8	-	1954	6.7	1957	- 19.1
.3	_	1954	4.6	1957	10.8
.9	-	1956	5.3	1957	25.3
.7	_	1956	4.5	1957	10.9
.6	-	1956	2.0	1957	13.6
1.			. (1057	o -
.4	-	196 <u>1</u> 1955	0.6 0.1	1957	2.5 0.6
.3	-	1958	0,2	1952 1952	0.7
.2	_				0.5
.0	-	1959	1.3	1962	3,3
•.3	-	1953	0.2	1952	0.5
4	-	1954	0.2	1952	0.7
3	-	1953		1958	0.5
.2	-			· · .	0.3
••0	-		0.0	1950	0.1
•4	-	1959	2.4	1962	6.1
.1	-	1954	0.7	1952	2.3
	-	1954	0.4	1952	1.0
1 1 1 1	.2 .0 .3 .4 .3 .2 .0	.2 - .0 - .3 - .4 - .3 - .2 - .0 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


ta - Sevier River Basin

of measurement. It is the total runoff of a drainage area above the point of orded or estimated. or the period of study the man-made developments as they existed at the beginning

• the effect of the present man-made developments if they had existed over the

55

Quality of Water

Quality of water analyses for irrigation are available from publication of the State Engineer (Bulletin No. 10) and the Geological Survey (Chemical Analyses of Surface Waters in Utah, October 1959 to September 1962). Additional quality of water samples are now being collected throughout the drainage basin by the Department of Agriculture, but the analyses are not yet available to the Bureau of Reclamation. A record of chemical analyses is also found in the supporting data.

Water requirements

The Sevier River Basin was divided into areas to facilitate the determination of the theoretical unit irrigation requirements. Climatological data were obtained from Weather Bureau stations at Delta, Panquitch, and Richfield. Stations located in the vicinity of the respective areas were used to determine the length of growing season, frost-free period, effective precipitation, and other data pertinent to the determination of irrigation requirements. Climatological data used are shown in the table on page 59.

Cropping Patterns

The cropping patterns by areas expected to develop under project conditions is shown below.

<u>Cropping patterns antici</u>	pated under C	entral Utah project	
		Percent of total	
Crop	Panguitch	Richfield	Delta
Alfalfa (hay)	35	38	11
Alfalfa (seed 1st and 2nd crops)			57
Pasture	53	30	2
Sugar beets		6	5
Corn	2	5	5
Small grain	10	21	20
Total	100	100	100

Sevier River Basin

Diversion Requirements

The derivation of average monthly diversion requirement per irrigable acre for each area at appropriate points of diversion is included in the table on the following page.

WATER SUPPLY

CHAPTER III

	Panguitch	Richfield	Delta
	Anni	ual requirement	nt
	(acre	e-feet per ac:	re)
		production a	
Consumptive use requirement	1.29	1.85	1.98
ffective precipitation	0.26	0.18	0.16
Fround water contribution			0.44
Irrigation requirement	1.03	1.67	1.38
	(Based or	n irrigable a	creage)
Irrigation requirement	0.98	1.59	1.31
Farm losses	0.98	1.46	1.07
Farm delivery requirement	1,96	3.05	2.38
Conveyance loss	0.65	0.76	0.42
Diversion requirement2/	2.61	3.81	2.80
	Monthly d	liversion requ	uiremen
	(acre	e-foot per ac	re)
April			0.12
May		0.41	0.77
June	0.78	0.96	0.69
July	0.89	0.98	0.61
August	0.66	0.89	0.41
September	0.28	0.57	0.14
Detober		F 1	0.06
Total	2.61	3.81	2,80

Summary of irrigation diversion requirements

Reservoir Evaporation Losses

2/ Measured at Sevier River.

Reservoir evaporation losses were determined for Piute, Otter Creek, and Sevier Bridge Reservoirs. The evaporation rates of Piute Reservoir were measured for the summer months in most of the years taken into consideration. Winter months and missing records were estimated by correlation with evaporation rates on Utah Lake. All three reservoirs appear to have similar evaporation characteristics. Piute Reservoir evaporation rates were therefore applied to Otter Creek and Sevier Bridge Reservoirs after differences in climatological data were taken into account. It is estimated that Otter Creek's evaporation rates would be 95 percent of the rates at Piute Reservoir, and Sevier Bridge Reservoir would be 105 percent of the Piute Reservoir rates.

					Clima	tologic	al data						
					Sevie:	r River	Basin						
Weather						Mean_te	peratu	re (°F.)				
station	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Panguitch	22.7	26.7	34.0	42.8	50.1	57.8	64.1	62.7	55.8	45.5	33.6	25.8	43.5
Richfield	28,4	32.7	40.2	48.2	56.5	64.6	71.6	69.9	61.7	50.8	37.7	30.8	49.4
Delta	24.8	31.3	<u> 39• 3</u>	49.5	58.3	65.9	76.1	74.5	64.3	51.8	36.7	29.9	50.2

Weather					Mea	n preci	pitation	n (inch	es)				
station	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Panguitch	0.58	0.57	0.71	0.63	0.61	0.52	1.40	1.51	0.89	0.93	0.48	0,58	9.41
Richfield	.63	.65	.83	.69	.78	• 55	.80	.78	•52	.64	•56	•58	8.01
Delta	•56	•59	.89	.83	.83	.67	.24	.41	•38	1.06	.51	.63	7.60

		Growing season	F	rost-free period		
Weather			No. of			No. of
station	From	То	days	From	То	days
Panguitch	June 1	September 14	106	June 19	August 29	71
Richfield	May 4	October 1	151	May 27	September 18	115
Delta	April 17	October 21	188	May 7	September 30	147

Estimated evaporation rates at Piute, Otter Creek, and Sevier Bridge Reservoirs are summarized in the following table.

Measured and estimated evaporation rates Sevier River Basin

	<u>(Unit</u>	ieet)						
		Evaporation rate						
	· · · · · ·		Measured					
	E	Estimated						
	Otter ,	Sevier Bridge	<u>estimated</u>					
Month	Creek	Reservoir2/	Piute 3/					
January	0.04	0.04	0.04					
February	,05	.06	.05					
March		.21	.20					
April	• 34	•38	.36					
May	.19 .34 .48	•54	.51					
June	.61	.67	.64					
July	•59	.65	.62					
August	.50	.56	•53					
September	.42	.46	•44					
October	.27	.29	.28					
November	. 09	.10	.10					
December	.04	.04	.04					
Total	3.62	4.00	3.81					
7/ 77.11.1		<u> </u>						

1/ Estimated to be 95 percent of the evaporation rate of Piute Reservoir.

2/ Estimated to be 105 percent of the evaporation rate of Piute Reservoir.

3/ Measured values were taken from climatological data reports of the U.S. Weather Bureau. Missing records were estimated by correlation with the evaporation rates of Utah Lake. Pan evaporation factor of 0.70 was used to convert pan evaporation to lake evaporation.

Water rights

More than 40 court decrees have been rendered on suits concerning water right on the Sevier River system. The three most important ones are entitled "Deseret Irrigation Company and Leamington Canal Company vs. Samuel McIntyre, et al."; "Richfield Irrigation Canal Company, et al. vs. Circleville Irrigation Company, et al."; and "Richlands Irrigation Company, Inc. vs. Westview Irrigation Company, Inc., et al." A decree of the first mentioned case was rendered by Judge E. V. Higgins in 1901 and on the second by Judge C. W. Morse in 1906. These two decrees were largely the result of stipulations between committees and representatives of water users. The third case has come to be known as the Cox Decree and was rendered November 30, 1936.

The Cox Decree is a result of an adjudication of the Sevier River system and takes into full consideration the previous decrees, agreements,

stipulations, statements of claims, the survey of records and files, and an examination by the State Engineer and the Court. Prior to the completion of the Cox decree, the State prepared a "Proposed Determination of Water Rights on the Sevier River System" and submitted it to the Court for use in the case. The State Engineer's proposed determination of water rights contains a tabulation of rights to February 1926. Except for storage rights decreed to the Piute Reservoir and Irrigation Company and the Sevier Bridge Reservoir Company, the Cox Decree divided the Sevier River system into two zones, A and B. This was done for the more efficient distribution and use of the water. Zone A included all rights above the dam of the Vermillion Canal Company situated in Sevier County, and Zone B included all rights below the dam of the Vermillion Canal Company. The two zones are independent as far as primary, second class, third class, and fourth class rights are concerned. Zone A has no commitments to bypass water within their direct flow rights to Zone B.

The priority of the primary rights along the river in Zone A starts at the head of the river and proceeds downstream by reaches to Vermillion Dam. Each canal in a reach receives a prorated share up to its water right of the water available. The second, third, and fourth class rights are filled after all primary rights are filled and the priorities start at Vermillion Dam and proceed upstream by reaches. No third class rights receive water until all second class rights are filled, and no fourth class rights receive water until all third class rights are filled.

Any water in excess of direct flow rights is termed "summer storage water" which, together with the "winter storage water" in excess of stock watering requirements, makes up the storable flows. This water is subject to distribution between Plute Reservoir and Sevier Bridge Reservoir. This distribution is outlined on page 186 of the Cox Decree. Any of the stockholders of Plute Reservoir can, if they so desire, store their summer flows in Plute Reservoir. This water, however, cannot be carried over from year to year because the decree states that if there is any such water in the reservoir on October 1 it becomes summer storage water and is to be distributed between Sevier Bridge Reservoir and Plute Reservoir. The quantity of storable winter and summer flows is determined monthly so that each reservoir will have its rightful storage under any runoff pattern.

Chapters II, III, and IV of the Cox Decree cover the rights of the independent users which do not divert directly from Sevier River.

Water rights in the San Pitch River Basin are also defined in the 1936 Cox Decree. Recent litigation includes the San Pitch River Basin; however, the State Engineer has not published notices calling for statements of water users' claims. The adjudication is to update the 1936 decree and define any additional water rights acquired since the decree was issued.

Since the San Pitch River Basin receives water from the San Rafael and Price River Basins, it is affected by pending general water right adjudication proceedings in those basins.

Essentially all surface water in the San Pitch Basin is presently appropriated. Only during periods of exceptionally high runoff does San Pitch River water reach the Sevier River, and then it is required to meet downstream rights. Most of the applications filed since 1936 have been made to appropriate ground water for domestic use or for supplemental irrigation.

Price River Basin

Mater resources

The Price River Basin water sources are also presented in detail in the Price and San Pitch River Basins report of December 1964. Only a summary of the resources is included in this chapter.

The watershed of the Price River Basin ranges from 5,500 feet to 12,300 feet above mean sea level and is characterized by glaciated mountain slopes, steep canyons, a relatively impervious bedrock, and a comparatively shallow soil mantle. Consequently the runoff is rapid, contributing to occasional destructive floods and wide seasonal fluctuations in streamflow. Runoff reaches its high stages in May or June, falls off rapidly, and is quite low in the late summer months.

The Geological Survey has maintained streamflow gaging stations at a number of locations within the Price River basin. Flows at these stations were used along with snow survey data to estimate flows at other locations. A summary of streamflow is found in the table on the following page, and the Map on page 64 gives the location of the gaging stations within the drainage area. Records of streamflow and canal diversions by months are included in the supporting data.

Quality of Water

Price River water samples collected by the Geological Survey, the State Engineer, and the Bureau of Reclamation indicate that the water from the headwaters downstream to the Carbon Canal heading below Helper is of good quality for irrigation. Below this point, however, the base flow consists principally of return flow, and the high dissolved solids concentration limits its use to the high salt tolerant crops. Results of the analyses of the samples are found in the supporting data.

Below the confluence of the Price River and Gordon Creek and after the point of major diversion, the instream water is unfit in terms of quality for municipal purposes and for industrial purposes, except perhaps for coal washing and cooling.

	Summary of stream gaging data Price River Basin (Unit - 1,000 acre-feet)							
	Drainage		Average	Anr				
Gaging, station	area (sq. mi.)	Period of record 1/	recorded flow	Average				
Gooseberry Creek near Fairview	8	1960-62	6.2	2/7.8				
Gooseberry Creek near Scofield	16	1931, 1941-62	13.5	2713.6				
Price River above Scofield Reservoir near Scofield	62	1931-32 (frag.), 1939-62	32.9	2/33.9				
Price River near Scofield	163	1944-62	50.4	3/51.9				
Price River near Soldier Summit	53	1938-39 (frag.), 1940-62	13.9	2/14.4				
Price River near Heiner	455	1935-62	79.2	5/86.5				
Price River near Helper	530	1905-06, 1908-34	104.4	4/91.2				
Price River near Wellington	850	1950-58	54.6	~				
Price River at Woodside	1,500	1909 & 1911 (frag.) 1910, 1947-62	70.7					
Green River at Green River	40,600	1895-98, 1904-62	4,709.3	2/4,359.8				

Water year; does not include records after 1962.

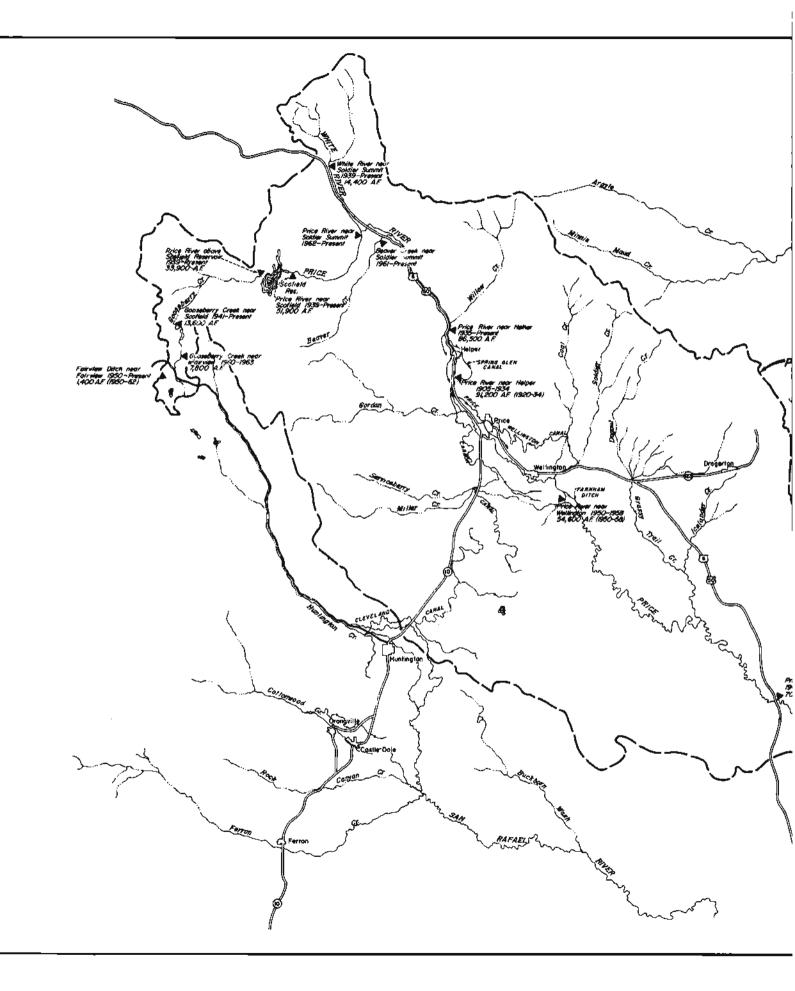
Historical flow.

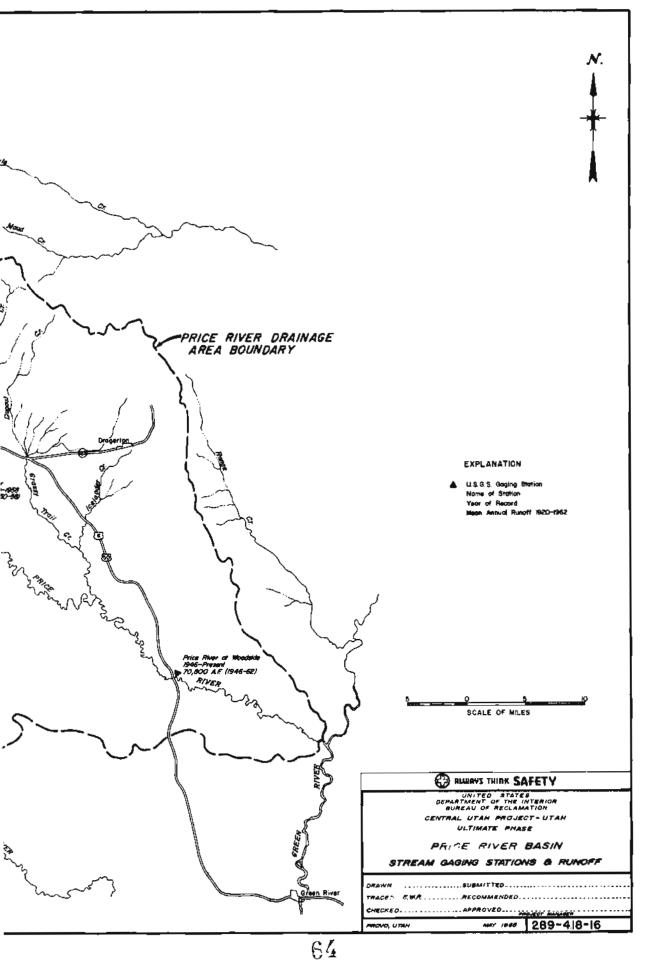
Past modified flow.

Historical flow record of average annual runoff for period 1920-34 only.

121014 5 Past modified flow plus or minus the change in content of Scofield Reservoir plus estimated Note: Historical flow is the flow actually experienced at a gaging station or point of measurement. area above the point of measurement as influenced by nature and the activities of man. It may Past modified flow is the historical and/or natural flow corrected to show for the period of they existed at the beginning of the period of study.

Present modified flow is the historical and/or natural flow corrected to show the effect of t they had existed over the period of study.


gaging	data
Basin	
me feet	1


Average	Ani	mal runo	ff for period (1920-62)	l of stud	y
recorded		M	linimum	N	aximum
flow	Average	Year	Quantity	Year	Quantity
6.2	2/7.8	1961	3.1	1952	17.4
13.5	2713.6	1961	5.4	1952	29.5
32.9	2/33.9	1961	10.8	1952	78.0
50.4	3/51.9	1961	16.4	1952	124.3
13.9	2/14.4	1934	6.2	1952	333.3
79.2	5/86.5	1961	20.9	1952	252.9
104.4	\$/91.2	1934	26.4	1952	198.3
54.6		1956	15.5	1952	208.8
70.7	-	1960	23.4	1952	247.8
4,709.3	2/4,359.8	1934	1,306.6	1921	7,206.0

4 only.

d Reservoir plus estimated evaporation from Scofield Reservoir. m or point of measurement. It is the total runoff of a drainage activities of man. It may be recorded or estimated. to show for the period of study the man-made developments as

ed to show the effect of the present man-made developments if

Water requirements

Consumptive use requirements for the Price River Basin were developed by the Soil Conservation Service. Farm irrigation efficiencies and conveyance efficiencies computed by the Bureau of Reclamation for the Emery County project were used for the Price River area where applicable. The irrigation diversion requirements developed under these criteria are summarized in the following table.

> Summary of irrigation diversion requirements Price River Basin

Consumptive use requirement Effective precipitation Irrigation	Annual requirement (acre-feet per acre) (based on productive acreage) <u>1</u> / 2.24 <u>.20</u> 2.04
Irrigation requirement Farm losses Farm delivery requirement Conveyance loss Diversion requirement	(Based on irrigable acreage) 1.94 <u>1.79</u> 3.73 <u>.67</u> <u>2</u> /4.40
April May June July August September October	Monthly diversion requirement (acre-feet per acre) 0.15 .62 1.14 1.14 1.14 .76 .48 .11

1/ The productive area is estimated at 95 percent of the irrigable area.

4,40

2/ Measured at Price River.

Reservoir Evaporation Losses

Total

To determine the net water available for project use, reservoir evaporation losses were determined for Scofield Reservoir. The evaporation rates for Scofield Reservoir were measured by a Class A Weather Bureau evaporation pan operated at Scofield Dam during the summer months and estimated for the winter months. The average evaporation rates are summarized as follows.

Evaporation rateScofield Reservoir				
	Evaporation rate			
Month	(feet)			
January	0,01			
February	.01			
March	.08			
April	.18			
May	•35			
June	.48			
July	.51			
August	.42			
September	•33			
October	.23			
November	• 05			
December	OL			
Total	2,66			

Water rights

Decreed Rights on Price River

Water rights on Price River and tributaries were adjudicated in the Seventh Judicial District Court of Utah in 1902 and 1910, with a correction issued in 1914. The combined effect of these decrees is a listing of rights by classes according to priorities, with the primary right being first class. The irrigation rights are defined in terms of acres irrigated and specify a duty of 1 second-foot for each 60 acres. The decrees provide that the various classes of rights are entitled to the water shown in the decree and that none of the secondary classes are entitled to water until the requirements of the preceding classes have been fully satisfied.

Class	Irrigation		Industrial	Total
No.	Acres	Secft.	(secft.)	(secft.)
1	4,137.5	68.95	2.094	71.04
2	854.0	14.23	.70	14.93
3	4.0	.07	.24	.31
4	7.0	.11	.24	•35
5	22.0	•37		•37
6	6.0	.10		.10
7	6.0	.10	.228	•33
Total	5,036.5	83.93	3.502	87.43

The total rights decreed directly from Price River by classes for irrigation and industrial use are summarized in the following table.

Many tributaries to Price River were included in the "First," "Second," and "Not Classified" classes of rights from the decree. There is one known right initiated by use prior to the decree but not mentioned therein. This is a diligent use of the Gooseberry-Cottonwood Irrigation Company of

CHAPTER III

Fairview, Sanpete County. Under this right the company maintains a 1,900 acre-foot reservoir on the headwaters of Gooseberry Creek and diversion works through which reservoir water and divertible natural flows of Gooseberry Creek are diverted out of Gooseberry Creek Basin. The transbasin diversion right was recently determined to be 3,020 acre-feet annually by a decree of the District Court; however, the Price people have served notice that they will appeal to a higher court to have the amount reduced.

Tripartite Contract

The Tripartite Contract was executed between the United States of America, the Carbon Water Conservancy District, and the Price River Water Conservation District on October 11, 1943. The principal purposes of the contract were to define the relative application rights of the three parties to the waters of the Price River system, to agree to the construction of a new dam to replace the unsafe original Scofield Dam built by the Price River Water Conservation District, to convey to the United States certain rights-of-way and interests in reservoir lands, and to define the size of the land holdings and the price at which land may be sold.

Included in the contract were provisions allowing the United States to build storage and diversion works on the Price River system at a point or points above the confluence of Cabin Hollow Creek and Gooseberry Creek for use within or outside of the Price River Basin.

The water users in the Price River Basin have vigorously opposed any action which might lead to the export of water out of the basin. The State Engineer is presently taking the lead in negotiating an agreement between the Sanpete County interests and the Frice River interests regarding the diversion and use of water.

GROUND WATER

Introduction

This chapter contains an inventory of ground water as a source of existing water and a potential water supply for the Central Utah project. Ground water consists of water occurring below the ground surface in confined or unconfined water-bearing strata. Some ground water has been used in Utah for many years for irrigation, municipal, and industrial purposes. Overdevelopment of ground water in some areas has resulted in the restriction of use due to the lowering of the water table. High development costs and infringement on existing water rights have discouraged extensive ground water development. Use has been restricted primarily to areas of inadequate surface streamflow and areas of economically accessible ground water.

Detailed ground water investigations have not been completed for the areas of the ultimate phase. Some reconnaissance data are available for portions of the area; however, no firm interpretations have been made of these basic data. Thus detailed studies will be required prior to the formulation of a definite project plan to determine the amounts of ground water available in each area, the rate at which it can be withdrawn, and the relationship between ground water and other sources of supply.

Overdevelopment of ground water results in a reduction of water tables, a decrease in the quality of water, and an increase in development costs. Lowering of water levels also involves additional costs. The trend of local court decisions regarding well interference is that the new developments assume the cost of replacement water or of increased pumping lifts to existing wells. Pumping lifts of new wells also become significantly greater as development progresses. Full development of ground water would necessitate the use of poorer quality water that may involve desalinization for culinary and many industrial uses. Equalization of pressures must be maintained between areas to prevent the migration of poorer water into better water areas. Shallow ground waters are generally of lower quality and more expensive to recover.

Ground water recharge is essential to assure a supply for continued usage. Water tables are recharged primarily from infiltration of precipitation, seepage from surface waters and streams, and from irrigation. Extensive population development and industrial expansion, such as along the Wasatch Front, cause a reduction in ground water recharges from all three of these major sources. Thus available ground water for development in the Wasatch Front area is actually decreasing rather than increasing. Estimates of ground water shown in this report have been taken primarily from Fublished papers or reports of other agencies. These estimates, although often optimistic, are used since they are the only ones available and they must be subsequently substantiated by adequate investigations. Detailed ground water investigations will continue for the project area and will be incorporated in the plan formulation estimates on a continuing basis as they become available throughout the planning period.

Wasatch Front Summary

The areas along the Wasatch Front are the most significant in the ultimate phase, both from the standpoint of present ground water use and of potential development. Thus a summary of these areas is presented for ready reference.

Approximately 65,000 acre-feet of ground water could be developed in the Wasatch Front areas in addition to the 215,000 acre-feet that are now withdrawn. The additional development, however, would involve a major reduction of water levels and the utilization of ground water of substandard quality with accompanying higher development costs. Most of this unused ground water, amounting to about 50,000 acre-feet, would be obtained from Jordan Valley. The natural ground water discharge in Utah and Juab Valleys is largely tributary to the overexploited surface water resource; thus most of the ground water is fully appropriated. It was assumed that about 5,000 acre-feet could be salvaged in Goshen Valley and about 10,000 acre-feet in Utah Valley between Utah Lake and Jordan Narrows.

The following table is a summary of the existing wells along the Wasatch Front with withdrawals for 1963 and 1964 and the potential increase that may be developed. The estimated increases are average annual yields subject to variations necessary to provide carryover storage for use in drought periods.

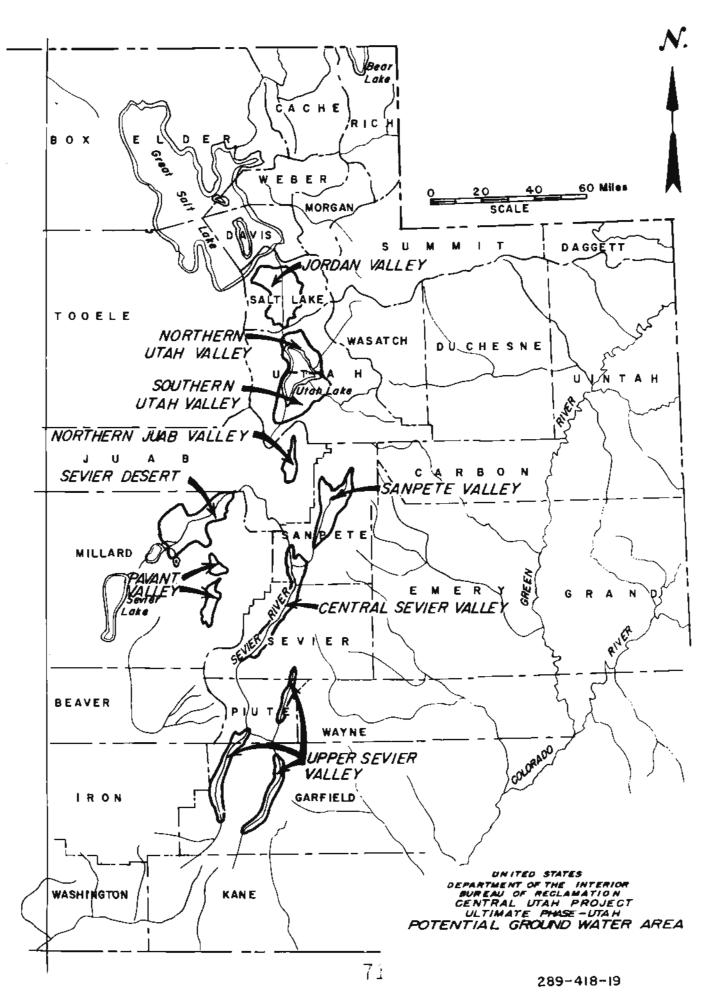
Gr	Ground water summaryWasatch Front							
		No. w	ells			Reconnais-		
		compl	eted			sance		
	Approxi- in 1963					appraisal		
	mate no.	(diam	eter)	Withdraw	als from	of		
	wells as Less More wells				potential			
	of Dec.	than	than	19631/	19642/	increase		
Area	1962 <u>1</u> /	6 in.	6 in.	(acft.)	(acft.)	(acft.)		
Jordan Valley	9,000	24	19	110,000		50,000		
Northern Utah Valley	3,000	6	7	50,000	47,000	10,000		
Southern Utah Valley	1,600	10	14	25,000	20,000	0		
Goshen Valley	T)000	13	1 4	11,000	9,200	000, 5		
Northern Juab Valley	120	0	l	17,000	16,000	0		
Total				213,000		65,000		

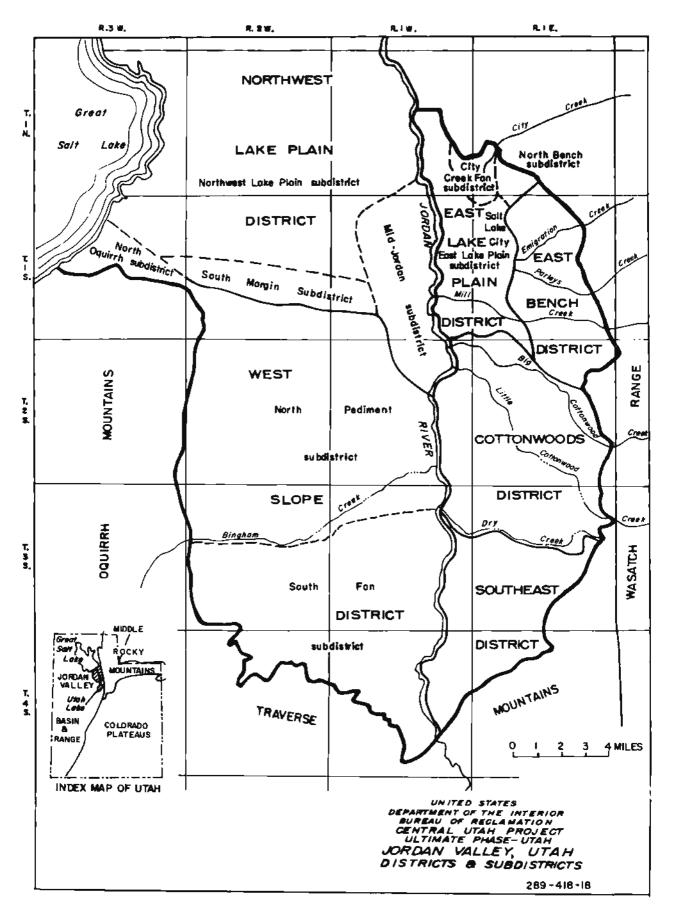
1/ Data taken from Cooperative Investigation Report No. 2 by Utah Water and Power Board and USOS.

2/ Advanced data received from USGS by telephone.

Discussion by areas

The ground water discussion is presented by individual valleys or areas as shown on the map on the following page. Most of the published ground water information is contained in basic data reports by the U.S. Geological Survey. Information presented, when available, includes past investigations, major problems of ground water development, water quality, and preliminary estimates of perennial ground water yields.


Jordan Valley


Jordan Valley occupies the central part of Salt Lake County and is drained by Jordan River. For report purposes the valley has been divided into six ground water districts as follows: East Bench, East Lake Plains, Cottonwoods, Southeast, West Slope, and Northwest Lake Plainsdistricts. Some of these districts are further divided into subdistricts as shown on the map on page 72.

About 9,000 wells are being operated in Jordan Valley, and in 1963 the discharge totaled approximately 110,000 acre,feet. The 1963 estimated well discharge is summarized below by districts for various uses.

Ground water dischargeJordan Valley							
	(Unitacre-feet)						
		East			TT	North- west	
	East Bench	Lake Plains	Cotton- woods	soutn- east	West Slope	Lake	
	dis-	dis-	dis-	dis-	dis-	P leins dis-	Total 💡
<u>Use of water</u>	trict	<u>trict</u>	trict	trict	trict	trict	(rounded)
Industry	789	3,659	1,500	87	25	31,000	37,100
Public supply	5,232	4,023	15,600	300	641	2,898	28,600
Irrigation	1,350	0	1,300	100	4,251		7,000
Air condition-							
ing	200	700	0	20			900
Domestic and							
stock, and							
fish and fur							
culture	100	10,000	12,000	100	5,000	10,000	37,200
Total		. .					
(rounded)	7,700	18,400	30,400	600	9,900	43,900	110,000

Water level trends from 1952 to 1963 indicate that the discharge in three of the ground water districts (Cottonwoods, Southeast, and West Slope) exceeded the recharge. Smaller declines in other districts suggest that discharges and recharges are more nearly in equilibrium.

Data on both the piezometric surface and on the chemical quality of water indicate that the Cottonwoods district supplies a major part of the ground water to the East Lake Plains district and Mid-Jordan subdistrict. Thus, a decline of water levels in the Cottonwoods district will eventually affect the East Lake Plains district and the Mid-Jordan subdistrict. These aforementioned districts yield the best quality water in Jordan Valley; consequently, they are among the most heavily developed districts at the present time.

An estimate of the additional ground water that can be developed in Jordan Valley without respect to quality of water can be made based on the average annual ground water inflow of 180,000 acre-feet into the Jordan River. It is significant that only a part of the ground water originates from the aquifers that are possible of economic development; namely, the deep, generally confined aquifers.

The developable portion of this inflow is estimated as follows. The inflow as indicated by the variation of the chemical quality of water along the Jordan River and its tributaries is largely from the shallow water tables. The recharge to the shallow water tables is from precipitation and irrigation and canal seepage. This recharge occurs on the valley areas exclusive of the deep water table areas which recharge the confined (artesian) aquifers. The shallow water table recharge area is about 208,000 acres (269,000 minus 61,300--total valley area minus the area of deep water table). Assuming an average of 12 inches of precipitation during the nongrowing season and a 25 percent infiltration factor, the recharge to the shallow water tables from precipitation is 208,000 x $12/12 \times 0.25 = 52,000$ acre-feet, rounded to 50,000 acre-feet.

The recharge to the shallow water tables from the irrigation of 50,000 acres of land and from canal seepage is estimated by assuming the deep percolation losses and canal seepage to be 30 percent of the quantity diverted (4 acre-feet per acre). Thus, 50,000 x 4 x .30 = 60,000 acre-feet.

As indicated by the foregoing computations, the total annual ground water inflow to the Jordan River originating from the shallow water tables would be 110,000 acre-feet. This leaves about 70,000 acre-feet originating from deep ground water sources, including an indeterminate amount of underflow through the Jordan Narrows and saline water rising along fault zones. Some part of this 70,000 acre-feet, however, could presumably be salvaged from wells by lowering the water levels drastically so as to curtail this leakage. It is assumed that 50,000 acrefeet could be recovered.

A large part of the water thus salvaged would be of poorer quality than that presently developed. This can be expected because the high quality areas have now been subjected to more extensive development and are nearing the limit compatible with the long-term sustained yield.

It will, therefore, be necessary in the future to exploit the areas yielding a poorer quality of water. Also, as the valley approaches full development, the water level must be lowered in those aquifers with poorer quality water to control migration of the poorer quality water and consequent deterioriation of the better quality water. Therefore, the ultimate development of ground water on a firm sustained yield basis will involve increasingly greater costs because of the requirement for desalinization. Other physical factors will also increase costs, such as higher pumping lifts resulting from lowered water levels and the necessity to utilize less competent aquifers, requiring greater drawdown to produce a unit of water.

A reduction of recharge to the deep aquifers will occur and, in fact, has already taken place to some extent because of the urbanization of the recharge areas. The infiltration characteristics of these recharge areas, located on the high Lake Bonneville and Provo benches, are being changed by the construction of houses and paved streets, driveways, walks, etc. The resulting reduction in infiltration from precipitation has already been great enough to cause serious storm runoff control problems in the urban areas of Salt Lake County.

The entrant streams of Jordan Valley are as yet unregulated, and when future storage is provided and increased surface flow diversions are made above the mouths of the canyons, the recharge to the deep aquifers will be further reduced by reducing the flow of these streams over the recharge zones. This forthcoming reduction in recharge has not been taken into account in the foregoing estimate of available ground water.

The legal aspects should be considered in the planning of any largescale ground water development. Two categories of problems are involved. One concerns the right of an appropriator to pressure or water level. The second is concerned with the situation where ground water is tributary to fully appropriated surface streams and to springs.

The courts in Utah have leaned toward recognizing a right to pressure or water level as a part of the right to a given quantity of water. This doctrine places a serious block in the way of any large-scale ground water development in an area such as Jordan Valley. More than 95 percent of the total wells in Jordan Valley are small wells of less than 6 inches in diameter, many of which are flowing wells. About 125 are large-diameter wells that produce about two-thirds of the 110,000 acre-feet now discharged by wells.

A large-scale ground water development made over a period of a few years would cause a drastic lowering of water tables in the presently heavily developed areas. This would bring about considerable litigation that could delay the project and greatly increase its cost if the courts find that replacement and damages were justified.

Northern Utah Valley

A 60 percent increase in well discharge in northern Utah Valley has been shown during the 16 years ending in 1964. During this period the water levels have declined from 5 to 15 feet, which may be attributed in part to the increased well discharge since the precipitation has been only slightly below normal. Ground water withdrawals in northern Utah Valley and the purposes of use are tabulated below for the past 3 years.

Ground water withdrawals

(Unitacre-feet)								
Use	1962	1963	1964					
Irrigation	= 35,000	1/36,000	29,600					
Industrial	= 7,000		9,000					
Public supply	= 5,000	3,300	5,200					
Domestic, stock, and irrigation	= 1,200	<u>2</u> 7400	2,500					
Total (rounded)	49,000	50,000	47,000					
1/ Includes some stock ar	nd domestic	use.						

2/ Includes only domestic use.

Considerable hydrologic evidence indicates that the natural ground water discharge in most of northern Utah Valley is tributary to Utah Lake and the Jordan River. The waters of Utah Lake and the Jordan River are fully appropriated, and the ground water discharge into Utah Lake is thus, in effect, fully appropriated.

Additional ground water development would further lower the ground water levels and reduce the natural ground water discharge into Utah Lake. A general reduction in these water levels in the vicinity of Utah Lake of 10 to 60 feet would, depending upon the locality and the depth of aquifer, lower the piezometric surface below the level of the lake and halt ground water discharge into the lake.

Some evidence suggests ground water underflow from Utah Valley to Jordan Valley under the Jordan Narrows, but the existence of any substantial underflow has not been conclusively demonstrated. Further investigations will be made to determine if a flow exists.

It is possible that ground water could be developed in Utah Valley between Utah Lake and the Jordan Narrows without depleting Utah Lake. The piezometric surfaces in this part of the valley suggest that the ground water discharges into the Jordan River above the Narrows and possibly some flows under the Narrows. It may be possible to intercept this water before it reaches the area of pollution with saline water and salvage that portion that enters Jordan Valley. It is assumed for this study that about 10,000 acre-feet might be developed from this portion of Utah Valley.

Southern Utah Valley

Southern Utah Valley is considered to include the Springville-Santaquin district and the Goshen district to conform with published U.S. Geological Survey literature and data.

Springville-Santaquin district.--The amount of ground water withdrawals in the Springville-Santaquin district and its use for the years 1963 and 1964 are shown below. Records of use for previous years are not available for this district.

	(Unitac	re-feet)
Use	1963	1964
Irrigation	10,400	8,10 0
Industrial	400	600
Public supply	800	900
Domestic, stock, and irrigation	13,400	10,100
Total (rounded)	25,000	20,000

The ground water level trends in this district appear to be largely influenced by precipitation which would indicate that recharge and discharge are about at equilibrium. The piezometric surface contours indicate that the ground water moves toward Utah Lake. It would thus appear that the natural ground water discharge from the deep (confined) aquifers must be into Utah Lake. Ground water development would thus cause some depletion of the water supply of the lake.

A number of fresh water spring areas occur at locations distant from the lake, which springs are supplied by natural ground water discharge. These springs would be reduced by additional ground water development. The spring flows are used for irrigation with the surplus flows entering the lake largely during the nonirrigation season.

Ground water in the Springville-Santaquin district cannot be considered as a source of new water, and therefore it offers no potential for large-scale ground water development. Some quality of water problems would also develop with a major increase in ground water production.

<u>Goshen district.</u>--A considerable expansion of ground water production has occurred in this district since 1962. Records are available in the Goshen district of ground water withdrawals and use for 1963 and 1964 as follows.

	(Unitac	re-fe <u>et)</u>
Use	1963	1964
Irrigation	10,800	9,200
Industrial	30	30
Public supply	10	10
Domestic, stock, and irrigation	140	140
Total (rounded)	11,000	9,400

Long-term water level records are not available in this district. Therefore, the general ground water trends are not known. The ground water contours indicate, however, that pumping is producing a ground water trough which in turn indicates a significant decline of water levels has been caused by this short period of pumping.

The ground water contours indicate a flow toward Goshen Bay. Some evidence indicates that this lakeward flow is being largely dissipated in the valley bottom by evapotranspiration. Studies in progress indicate that 4,000 to 8,000 acre-feet may be presently discharged via this route. It is possible that some part of this loss could be salvaged. Water level records are too short, and the present extensive development has not been in operation long enough to show a definite trend. Although it is possible that the capacity of the present development is already approaching this limiting discharge, it is assumed for this study that 5,000 acrefeet remain to be developed and that there is no significant leakage into the lake.

The water being produced varies in chemical quality from well to well. Much of it is not suitable for domestic use but is being used for irrigation and stock water. A strong possibility exists that if the recharge is exceeded the quality will deteriorate. Two factors would contribute to this deterioration. One is the probability of recirculation because of the essentially unconfined state of the aquifer which will allow recharge from irrigation deep percolation. The second is the possibility of drawing water in from the aquifers under the valley floor which produce a poor quality of water.

Northern Juab Valley

The discharge from wells in the northern Juab Valley ranged from 800 acre-feet in 1951 to 17,000 acre-feet in 1963. Bureau of Reclamation studies made in connection with the 1964 Bonneville Unit Definite Plan Report included a reconnaissance inventory of ground water pumpage for the period 1951 to 1961. These ground water withdrawals were tabulated separately for the Nephi fan and Mona areas and are summarized below. This pumped water represents about 80 to 90 percent of the total ground water withdrawals used for irrigation.

_	(Un1t	acre-faet)	
Year	Nephi fan area	Mona area	Total
1951	800		200
1952	800		800
1953	800		800
1954	5,400		5,400
1955	4,600	1,000	5,600
1956	4,800	1,800	6,600
1957	2,700	1,300	4,000

	(Unitaer	e feet)(Continu	
Year	Nephi fan area	Mona area	Total
1958	3,900	1,800	5,700
1959	7,900	2,100	10,000
1960	9,500	2,000	11,500
1961	11,300	1,800	13,100

The U.S. Geological Survey inventory of combined pumpage from about 120 wells in northern Juab Valley during 1963 and 1964 is shown below. More than 80 percent of the wells discharge less than 10 gallons per minute.

	(Unitac	re-feet)
Use	1963	1964
Irrigation	17,000	15,500
Industrial		50
Public supply		
Domestic and stock	100	100
Total (rounded)	17,000	16,000

The water levels have shown a decline since 1951 in spite of above normal precipitation. This decline results from increased pumping, particularly in the Nephi fan area as shown in the above tabulation. Natural ground water discharge is from springs and evapotranspiration. The largest natural discharge is from springs at Burraston Pond which provide the principal source of supply for the Mona Reservoir.

For all practical purposes it appears that the ground water resources in northern Juab Valley are fully appropriated. Some water could be salvaged by curtailing evapotranspiration losses, but the necessary lowering of the piezometric surface in the valley bottom would undoubtedly affect the Burraston Springs and some wells which would involve replacement of the flows thus lost.

Generally the quality of the ground water in the vicinity of Nephi is such that it is not suitable for human consumption without desalinization although it is used for irrigation.

The Nephi fan aquifers present a unique opportunity for utilization as a storage reservoir for surface water from the Central Utah project. Existing or new wells could be employed as recharge wells in the offpeak season and as discharge wells in the peak season.

Sevier River Areas

The only available source of ground water data on the Sevier River is from the U.S. Geological Survey ground water studies which have been conducted since 1957 as part of a basinwide investigation outlined by the Sevier River Study Committee. Although final interpretive reports have not yet been published, the ground water data herein presented were taken from USGS basic data reports, study committee annual progress reports, the 1964 ground water conditions annual report, and news releases.

The ground water discussion of the Sevier River is presented in the three following areas.

<u>Central Sevier Valley.</u>--The Central Sevier Valley includes the Salina and Richfield areas. Ground water is available in the alluvial deposits throughout the valley under both artesian and water table conditions and is divided into five ground water basins. Ground water occurs under water table conditions at the upper end but is under pressure in the centers and at the lower end of the basins. The valley fill consists of gravel, sand, silt, and clay which reach a maximum thickness exceeding 800 feet. About 50 percent of the fill is permeable gravel and sand which yields water readily to wells and springs.

During a 1963 ground water pumpage inventory, the USGS measured a total of 16,000 acre-feet discharging from wells, of which 10,000 acre-feet was used for irrigation. Of the total discharge, 14,000 acre-feet was from flowing wells and 2,000 acre-feet from pumped wells. The report further indicated that the discharge from wells has not changed significantly in the past 5 years and that the long-time trends in ground water levels are due primarily to changes in precipitation.

Discharge from springs and drains is another source of water supply to the area from the ground water resource. It is estimated that ground water issuing via these channels averages approximately 95,000 acre-feet annually, of which 73,000 acre-feet is contributed by springs and 22,000 acre-feet by drains.

At the annual meeting of the Sevier River Basin Study Committee on February 19, 1964, Francis T. Mayo of the State Engineer's Office presented data representing conclusions of the ground water studies made to date in the Sevier River Basin. The key points of his conclusions, with respect to the Central Sevier Valley, are as follows.

- 1. That approximately 1,500,000 acre-feet of ground water are in permeable materials in the five separate basins in the central Sevier Valley.
- 2. That the surface water and ground water in these basins are interconnected.
- 3. That ground water discharge and recharge are in balance.
- 4. That about 100,000 acre-feet is consumed locally by phreatophytes of low economic value.

5. That about 35,000 acre-feet of ground water could be developed annually in the first three basins by wells and drains without greatly affecting the flow of the Sevier River.

In analyzing the foregoing conclusions which were made by the Geological Survey and the State Engineer's Office, the following observations are presented.

- 1. That the development of a significant amount of ground water, such as 35,000 acre-feet annually, would materially upset the present ground water recharge-discharge balance unless an extensive drainage system were constructed in the area.
- 2. Drainage construction to reduce ground water use in the phreatophytes area would
 - a. Eliminate many acres of pasture with fair to good economic value.
 - b. Create many economic problems for individual landowners because of established land use economy.
 - c. Require a detailed drainage investigation to determine the physical possibilities of water development through drainage.
 - d. Require an economic study to determine the feasibility of abandoning pasture lands and developing water through control of water tables.
 - e. Be difficult to determine the differential in evapotranspiration between the present high water table and the proposed controlled water table in the areas presently covered by phreatophytes.
- 3. If drainage were attempted by wells, there would be a definite depletion of the ground water aquifers which in turn would reduce the ground water contribution to the stream for downstream use. Thus, some of the pumped water would have to be turned back into the stream as replacement water.

Upper Sevier Valleys.--The Upper Sevier River Basin includes four main valleys--Panguitch, Circle, East Fork, and Grass Valleys. Most of the available ground water in the valleys occurs in the alluvial deposits under both artesian and water table conditions. The USGS has estimated that about 1,000,000 acre-feet of ground water is in storage in the waterbearing materials.

About 300 wells occur in the valleys, of which more than half are in Grass Valley and most are less than 4 inches in diameter. The U.S. Geological Survey indicates that in 1963 the total discharge from these wells amounted to about 3,600 acre-feet and that the annual discharge has not changed materially in the past 5 years. About 2,300 acre-feet was used for irrigation, and the remaining was used for domestic and public supply. About 1,300 acre-feet of the irrigation water was discharged from flowing wells and about 1,000 acre-feet was pumped.

Long-term fluctuations of water levels in the various valleys were generally similar during the past 20 years. Water levels were higher during the 1940's, a relatively wet period, but declined during the 1950's, a relatively dry period except for 1952 and 1958 when the flow was above normal.

Although it would be physically possible to develop some ground water in this area, the problems are much the same as have been outlined for the central Sevier Valley. No additional ground water supplies are anticipated at present for the Upper Sevier Valleys.

Sevier Desert.--Ground water occurs in unconsolidated deposits under both water table and artesian conditions. Water table conditions occur along the eastern margin of the Sevier Desert near the Canyon Mountains where the water-bearing materials become unconfined with a decrease in the quantity of fine-grained lake deposits above the Provo level of old Lake Bonneville (approximately 4,800 feet above m.s.l.). This aquifer is considered a major source of ground water where wells are drilled upslope from the Provo stage of Lake Bonneville.

Two artesian aquifers underlie the Sevier Desert--the shallow artesian and the deep artesian aquifers. The shallow aquifer has a depth range of 50 to 500 feet below land surface. These artesian aquifers are a very important source of water supply in this area.

Recharge to the aquifers occurs principally along the east side of the valley near the Canyon Mountains. Ground water that enters the recharge areas along the east side of the valley moves westward, under a hydraulic gradient, toward the topographically low-lying area south and west of Delta.

Ground water is discharged both by natural means and by wells. Natural discharge occurs in the low-lying area south of Delta and is principally by seeps. Ground water from the shallow aquifer is discharged by upward diffusion in a few areas located south and west of Delta. Most of this flow, which is very minor in magnitude, is intercepted and discharged through the shallow drainage system constructed throughout the area. Wells penetrate both the water table and artesian aquifers--the smaller discharge wells are flowing and the large discharge wells are pumped. Wells

81

drilled in the mountain front aquifer of the Leamington-Lynndyl and Oak City districts constitute an important source of irrigation water in these districts.

The shallow and deep artesian aquifers are tapped by all wells in the Delta district. Only a few wells in the Leamington-Lynndyl and Oak City districts tap these aquifers. The deeper aquifer is not penetrated by any wells in the Oak City district. Ground water that is withdrawn from these aquifers is used for industry, public supply, and irrigation. The following shows that withdrawals from pumped wells have increased from 1,500 acre-feet in 1951 to 24,800 acre-feet in 1963. Flowing well discharge over the same period has decreased from 3,000 to 1,400 acrefeet. It is estimated that the area containing flowing wells has been reduced by one-half since 1951.

Annual withdrawal	s from pumped
wells in the Se	vier Desert
Year	Acre-feet
1951	1,500
1952	3,000
1953	2,000
1954	4,000
1955	3,500
1956	5,000
1957	5,000
1958	8,600
1959	14,400
1960	15,300
1961	18,100
1962	19,800
1963	24,800
1964	26,200

Discharge of ground water by wells always causes a lowering of water levels in an aquifer. Water levels in both the artesian and water table aquifers have declined steadily since 1951 with the increasing number of wells that have been drilled each year. Since 1955 a steady decrease in precipitation has been shown in the recharge area for these aquifers. This steady decrease reflects a more rapid decline in water levels since 1955.

Ground water withdrawals increased only 3,500 acre-feet during the early period (1951-57), and water levels in all aquifers generally declined from 0 to 5 feet. With the larger increase in pumping from 1958 through 1963, water levels generally declined an additional 0 to 13 feet. Water levels declined only 3 feet during 1964 with a small increase in pumping over 1963; however, there was also an increase in precipitation during 1964.

A ground water reservoir that contains water of good quality appears to underlie the Sevier Desert area. This reservoir is surrounded on all sides and beneath by water of a poorer quality. Canal recharge from the Central Utah Canal affects the ground water quality to the east of the reservoir, particularly in the shallow aquifer. The poor quality of water which surrounds the remainder of the reservoir is unsuitable for irrigation.

Three major problems would materialize with further ground water development in the Sevier Desert: (1) legal problems, (2) water quality problems, and (3) economic problems. The magnitude of these problems would become greater with increased pumpage from the ground water reservoir and a resulting continual decline in the water level.

The increase in both the number of large-diameter pumping wells and the quantity of ground water pumped since 1951 has not caused any apparent major legal problems. These problems usually result from the "drying up" of flowing wells and the lowering of water levels in nearby smalldiameter pumping wells. The area in which flowing wells existed prior to 1951 is estimated to have been reduced to half by 1963.

Water quality problems would result from the migration of poorer quality ground water into the areas of better quality as water levels are continually lowered by increased pumping in the areas of better quality. Economic problems would result from increased pumping lifts that would be required to bring ground water to the surface.

It is estimated, however, that an additional 5,000 acre-feet per year from the deep aquifer in the Oak City district can be developed in the Sevier Desert without developing further legal, water quality, or economic problems. This estimate was made after calculating the quantity of ground water moving through an inflow section east of Delta during March of 1964. The deep artesian aquifer underlying the Oak City district is not presently penetrated by wells. This aquifer is not recharged by seepage from the Central Utah Canal and is more permeable in this district than it is farther west near Delta.

More detailed studies are required to determine what portion of the present (1963-64) magnitude of ground water withdrawal can be continued on a firm yield basis.

Sanpete Valley

The geology of Sanpete Valley is favorable for ground water development. The valley fill consists of permeable material capable of receiving and transmitting water. Ground water occurs both in unconfined and confined conditions. Certain of the underlying consolidated formations are also capable of receiving and transmitting water.

Under existing conditions a considerable ground water yield is within the valley. Most of the yield occurs through natural avenues as springs and seeps while a lesser amount has been developed through the installation of artesian and pumped wells. The total ground water yield for an average year has been estimated to be 50,000 acre-feet, of which about 13,000 acre-feet is developed from wells.

The quality of the underground water is generally good for both irrigation and human consumption with the possible exception of the water from some of the consolidated aquifers.

In planning and investigating, those concerned with development of a water supply from ground water sources must consider the fact that ground water discharge, both natural and artificial, from aquifers in the San Pitch River Basin is either tributary to the San Pitch River or is consumed by evapotranspiration. No evidence is available to suggest any loss of ground water by subterranean routes to points outside of the basin. Development and consumptive use of ground water thus deplete the flow of the San Pitch River. Water may be salvaged by reducing nonbeneficial use by phreatophytes in the lower portions of the basin, which water could be exchanged for ground water developed elsewhere in the basin from the deep or confined aquifers.

A reduction in nonbeneficial use would require a lowering of the water tables in the phreatophyte areas to levels that would allow the eradication of phreatophytes and the substitution of a more beneficial vegetation of either irrigated or dryland varieties with a lower consumptive use. One such program could provide for the development of suitable lands to a more efficient and beneficial use of water and for maintaining the poorer lands in a nonirrigated state. An alternative program would be to maintain all of the drained lands as nonirrigated lands so as to reduce the losses to a minimum. Either of these programs could require the Government to purchase these lands to be maintained in a dry state. The quantity of water thus salvaged annually would represent the quantity of ground water that would be available for development from the confined aquifers without depleting the flow of the San Pitch River. The salvaged water could return to the San Pitch River in exchange for ground water developed and used elsewhere in the basin.

The investigation program needed to determine the quantity of additional ground water that could be developed would include the ground water studies, surface water studies, drainage studies, and land classification and agronomic studies.

Pavant Valley

Ground water occurs in unconsolidated deposits under water table and artesian conditions and in basalt under water table conditions. Water

1

table aquifers in the unconsolidated deposits are located principally along the eastern margin of the valley, near the mountains, where the water-bearing materials become unconfined. This unconfined condition exists because of a decrease in the quantity of fine-grained lake deposits above the Provo level of old Lake Bonneville. This aquifer is not extensively developed along the eastern margin of the valley and is therefore considered as an unimportant source of water for wells. Water table aquifers in the basalt near Flowell and Kanosh are, however, important sources of water for irrigation.

Two artesian aquifers underlie Pavant Valley; however, they will be referred to as one unit because there is not sufficient data available to warrant separate discussions and most of the wells are developed in both aquifers. These aquifers provide the bulk of the ground water that is discharged from wells in Pavant Valley.

Recharge to the aquifers occurs principally along the east side of the valley near the Canyon Mountains and the Pavant Range. Aquifer recharge is derived from precipitation, from seepage losses in streams and canals, from infiltration of unconsumed irrigation water, and from underflow which moves from bedrock in the mountains into the permeable valley fill. Ground water that enters the recharge area along the eastern margin of the valley moves westward under a hydraulic gradient toward the basalt ridge on the west side of the valley. Water level contours indicate that ground water continues to move westward beneath the basalt ridge.

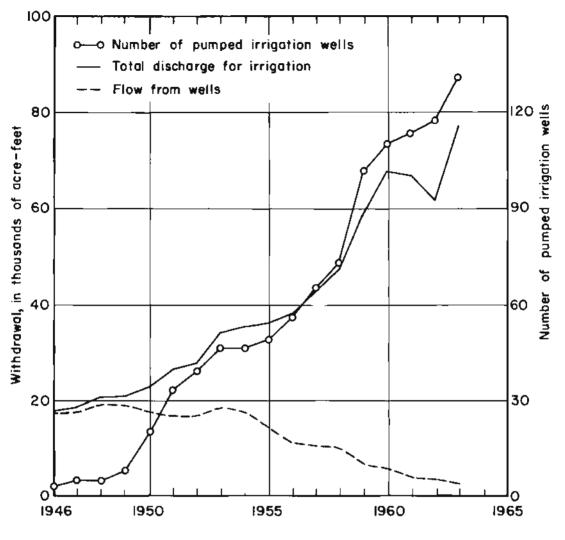
Discharge of ground water in Pavant Valley occurs both by natural means and by wells. Natural discharge occurs in the topographically lowlying area along the east side of the basalt ridge. Evapotranspiration and both nonartesian and artesian springs are the means by which ground water is naturally discharged. Several hot springs appear in the lowlying area; however, this water is derived from a source other than the presently developed aquifers.

Underflow beneath the basalt ridge is also considered as natural discharge. A "Sink" area appears near Flowell where the piezometric gradient increases rapidly to the northwest. Here the depth to water also increases and surface drainage is better than in shallow water table areas to the south. The emergence of several large springs just east of Clear Lake, about 10 miles northwest of Flowell, appears to be the outlet for ground water moving into the "Sink" area.

Wells withdraw ground water from both water table and artesian aquifers in Pavant Valley. Discharge from both flowing and pumped wells for the past 18-year period is tabulated on the following page and is shown graphically on page 87.

85

A sharp increase occurred in the number of large discharge irrigation wells developed since 1949 which has caused a steady decrease in flowing well discharge.


				Number of	Total num-
		Discharge		pumped	ber of
	(acre-feet)		irrigation	wells in
Year	Flowing wells	Pumped wells	Total	wells	valley
1946	17,300	400	17,700	3	343
1947	17,400	1,000	18,400	5	349
1948	19,400	1,200	20,600	5 8	361
1949	18,600	2,200	20,800	8	367
1950	17,600	5,100	22,700	20	400
1 951	16,500	9,800	26,300	33	415
1952	16,600	10,800	27,400	39	424
1953	18,700	15,100	33,800	46	445
1954	17,500	17,900	35,400	45	451
1955	14,400	21,600	36,000	49	466
1956	11,000	27,000	38,000	56	485
1957	10,200	32,300	42,500	66	498
1958	10,000	37,000	47,000	73	507
1959	6,300	53,300	59,600	101	522
1960	5,900	61,400	67,300	110	53 2
1961	4,500	61,800	66,300	113	535
1962	3,600	58,200	61,800	117	540
1963	2,700	77,000	79,700	133	542

Discharge from wells (estimated) and number of wells in Pavant Valley, 1946-63

Water levels in both the artesian and water table aquifers have declined steadily since 1949 with the increasing number of wells that have been drilled each year. Since 1948 a steady decrease in precipitation has been apparent in the recharge areas for these aquifers. This steady decrease would normally cause a decline in water levels without pumping from wells; therefore, the combined effects of decreased precipitation and increased pumpage caused a more rapid water level decline than if normal precipitation had continued.

Prior to 1950 withdrawals were nearly constant. During this early period (March 1946 to March 1950) water levels also remained nearly constant. In some cases water levels rose during this early period, which corresponds to the above-normal precipitation from 1945 to 1947. With an increase in pumping which started in 1950 and has continued through 1964, water levels have declined more than 40 feet (maximum decline is between Fillmore and Flowell).

Recharge waters which are derived from the principal streams entering Pavant Valley consist of 200 to 250 p.p.m. total dissolved salts and less than 20 p.p.m. chloride. Wells in the upper parts of the alluvial

Graph showing relation of number of pumped irrigation wells and total discharge to discharge from flowing wells in Pavant Valley, 1946-63.

fans (above the Central Utah Canal) yield water of similar composition but contain a greater amount of total dissolved salts. Ground water that is discharged from wells located lower on the fans (below the Central Utah Canal) carries more dissolved salts and in particular contains a much larger proportion of sodium, chloride, and sulphate ions. This poorer quality ground water obtained lower on the fans reflects recharge by seepage from the Central Utah Canal into the upper portion of the artesian aquifers. Wells and springs near the western margin of the valley and those in the southern portion yield sodium chloride and sulphate waters ranging from 1,000 to 8,000 p.p.m.

PROJECT LANDS AND DRAINAGE

Land Inventory

General

An inventory has been made of all the available land classification data for the potential land areas in the ultimate phase of the Central Utah project. Data presented herein were obtained from various methods, including reconnaissance-type surveys, land use surveys, and estimates or secondary survey information obtained from all sources available. The bulk of the classification data presented has been obtained from two major surveys; namely, the Colorado River investigation and the Colorado River-Great Basin survey.

The Colorado River investigation was made by the Bureau of Reclamation under the direction of E. R. Fogarty during the period of 1933 to 1936. It is a reconnaissance-type survey of lands along the Colorado River and its tributaries and includes the Uinta Basin and the Price River Basin as part of this report. The nonirrigated lands were separated into arable and nonarable categories, and the arable land was classified as either class 1 or class 2. Irrigated lands were merely designated as arable or meadow. Since aerial photographs were not available for this survey, horizontal control was established on 18×24 -inch sheets of detail paper by use of a planetable and alidade. The scale used on these sheets was 1,000 feet equals 1 inch, and an average of about one 5-foot hole per section was dug to examine the soil and subsoil.

The Colorado River-Great Basin survey was a cooperative effort by the Utah Agricultural Experiment Station and the Bureau of Reclamation. Some previous cooperative classification by the Bureau of Chemistry and Soils and the Utah Agricultural Experiment Station was projected into this survey. The work, completed in 1939 and 1940, was restricted to lands within the Great Basin and is of a reconnaissance type. Part of the work was done on aerial photographs with a scale of 4 inches per mile, and the balance was done on planetable sheets with a scale of either 1,000 feet or 2,000 feet to the inch. On the average two to three 5-foot holes were dug per section to examine the soil and aid in the classification. Irrigated and nonirrigated arable land was separated into classes 1, 2, and 3, and the nonarable land was placed in class 6.

Recent land classification surveys made by the Bureau of Reclamation since 1940 are available for a few of the areas. Some specifications used in these surveys are of a higher grade than those used in

PROJECT LANDS AND DRAINAGE

reconnaissance land classification. Pending the completion of a detailed drainage investigation, however, the recent land classification surveys must be considered of a reconnaissance type. The land use surveys and estimates used in this study to obtain the reported acreages were prepared by the Bureau of Reclamation.

A summary of the land classification data is presented in the table on the following page by the individual areas, showing the date, type, and source of survey and the land classes when available. These previous surveys were sufficient for the purpose for which they were intended; however, they are inadequate for a detailed study. Prior to the preparation of a definite plan report, a detailed land classification will be completed for those areas selected in that particular plan. The estimated land shown in the table includes the approximate area that would be covered in a detailed classification. Locations of the various areas are shown on the map on page 92.

Areas

A brief description of the potential land areas considered for this report is contained in the following paragraphs. Each area is discussed separately as to the location, type of survey, acreage, and soil characteristics.

Deadman Bench Area

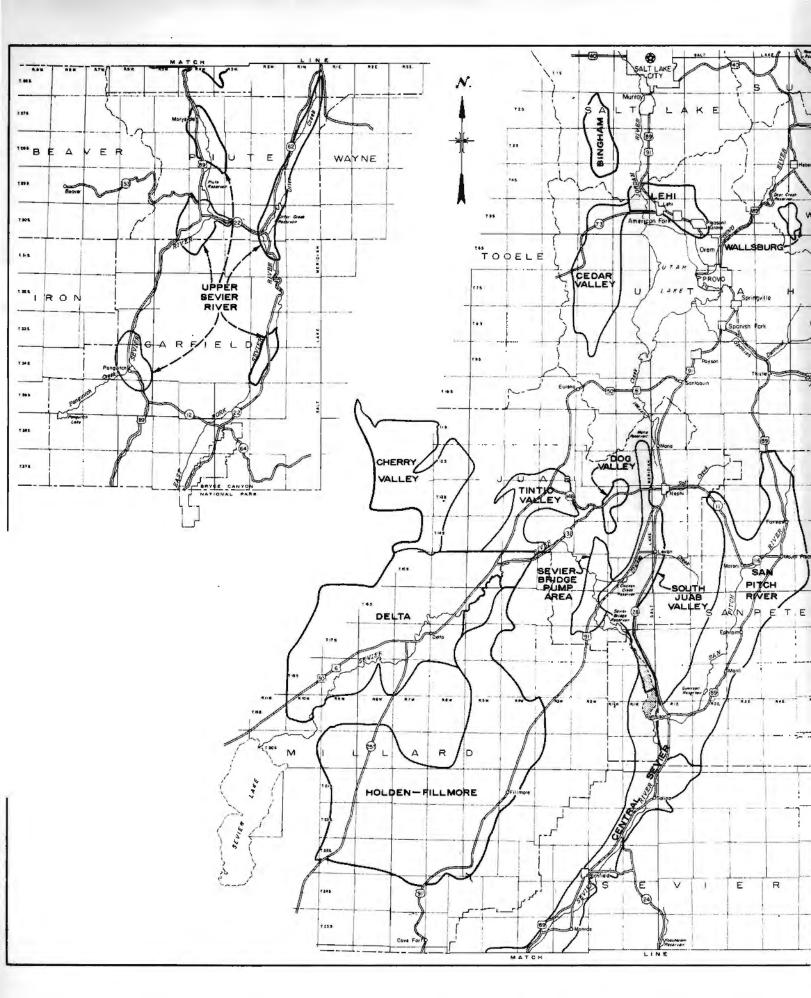
Deadman Bench includes an area beginning on the south side of the Green River a few miles east of Ouray, Uintah County, and extends east into Colorado about 3 or 4 miles at the Moffat and Rio Blanco County line. A survey of this area was made by the Bureau of Reclamation in connection with the Colorado River investigation of lands in the Upper Colorado River Basin. Under this survey there were found to be around 70,000 acres of arable, nonirrigated land.

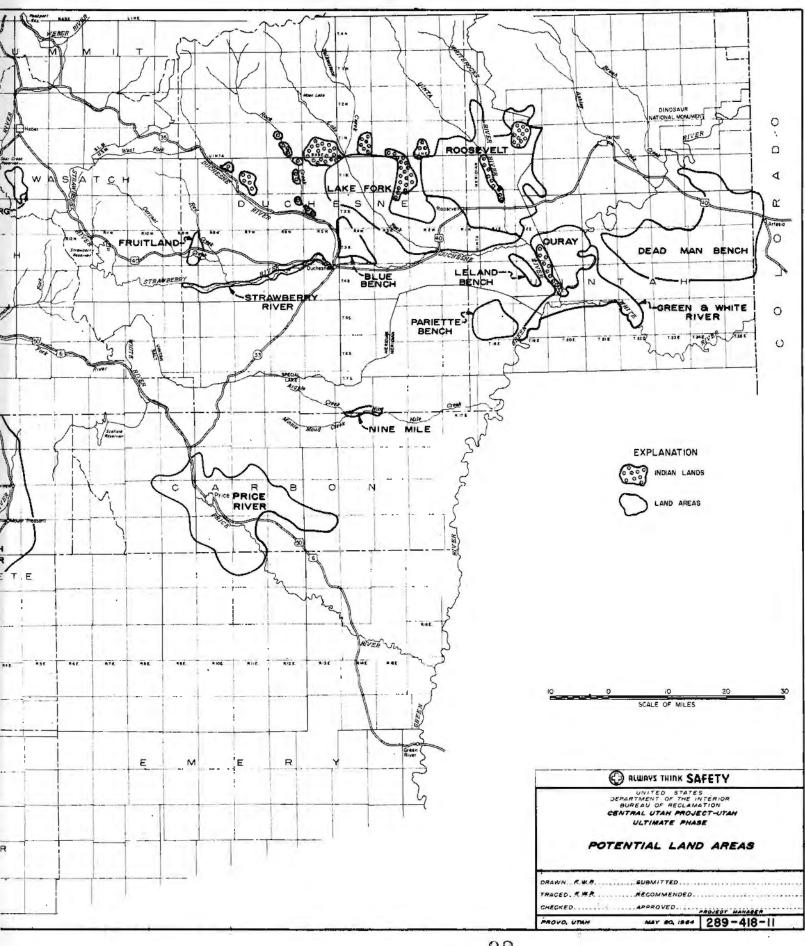
The lands occur in broad, gently sloping valleys on terrain characterized by narrow ridges and valleys on high elevation undulating bench lands, on moderately sloping alluvial fans, and on gently sloping river terraces. The soils are alluvial, having textures that range from medium to light, and are deepest in the broader valleys and shallowest on the elevated benches and in the narrow valleys. Their salinity content is low, but there are definite indications of sodic conditions in some areas. The soils are underlain by generally impermeable saline shale and sandstone although intervening gravelly substrata show in some localities.

Green and White Rivers Area

The Green and White Rivers area lies adjacent to and southwest of the Deadman Bench area on the east side of the Green River. It extends about 10 miles up the White River from the confluence of the Green and

Unit: Acres


Basin and area	Date classified	Type of survey	Source of classification	Cless 1	Class 2
Uinta Basin	······································				
Deadman Bench	1938	Reconnaissance	Colorado River Inv. USBR		
Green and White Rivers	1935	Reconnaissance	Colorado River Inv. USBR		
Uinteh	1937	Reconnerssence			
Roosevelt	1962-1963	Reconnaissance	Bureau of Reclamation		20,000
Ourey	1963	Reconnaissance	Bureau of Reclamation		2,000
Lake Fork	1962	Reconnaissance	Bureau of Reclamation		12,000
Leland Bench	1933-1936	Reconnaissance	Colarado liver Inv. USBR		,
Pariette Bench	1933-1936	Reconnaissance	Colorado River Inv. USBR		
Blue Bench	1933-1936	Reconnaissance	Colorado River Inv. USBR		
Fruitland	1933-1936	Estimate	Colorado River Inv. USBR		
Strawberry	1956	Reconnaissance	Bureau of Reclamation		600
Nine Mile	1933-1936	Estimate	Colorado River Inv. USBR		
Subtotal					34,600
Bonneville Basin					
Wallsburg	1950	Land use survey	Fureau of Reclamation		
Ringham	1939-1940	Reconnaissance	Colo. River-Great Basin USBR		
Lehi	1948	Recon. and estimate	Bureau of Reclamation	3,000	8,000
Cedar Valley	1939-1940	Reconnaissance	Colo. River-Great Basin USBR	2,000	0,000
Cherry Valley	1939-1940	Reconnaissance	Colo, River-Great Basin USER	2,000	
Dog Valley	1939-1940	Reconnaissance	Colo. River-Great Basin USBR		
South Juab Valley	1939-1940	Reconneissence	Colo. River-Great Basin USAR	4,000	2,000
Tintic Valley	1939-1940	Reconnaissance	Colo. River-Great Basin USER	4,000	2,000
Holden-Fillmore	1939-1940	Reconnaissance	Colo. River-Great Basin USAR	18,000	5,000
Subtotal	1939-1940	Veconnetesance	COID. RIVEL-GIERC BESIN COM	27,000	15,000
	· · · · · ·			2000	1,7,000
Sevier River					
Upper Sevier River					
East Fork	1964	Reconnaissance	Bureau of Reclamation		
Koosharem and Otter Creek	1964	Reconnaissance	Bureau of Reclamation		
South Fork	1964	Reconnaissance	Bureau of Reclamation		
Below Piute Reservoir Subtotal Upper Sevier	1964 Biver	Reconnaissance	Bureau of Reclamation		
Central Sevier	1939-1940, 1964	Reconnaissance	Colo, River-Great Basin USBR		
Sevier Bridge Pump	1939-1940	Reconnaissance	Colo. River-Great Besin USBR		
Delta	1928, 1939-1940,	Recon. and detailed	Bureau of Reclamation	17,000	40,000
DELUA	1964	Recon. and detailed	Fureau of Recramation	1,,000	40,000
Subtotal				17,000	40,000
San Pitch River	1939-1940, 1960-	Reconnaissance	Colo. River-Great Basin USBR		
	1961		and SCS		
Price River	1957	Land use survey	Bureau of Reclamation		
Subtotel				44,000	89,600
Indian lands	1960-1964	Indian survey	Water right claims, Uintah and		
Ouray Valley	1900-1904	Indian sufach	Ouray Indian Reservation, Utah,		
Rock Creek			E. L. Decker		
Little Valley			E. L. DOURCI		
Towanta Flat					
Bluebell Benches					
Mud Springs					
Uintah Bottoms					
Deep Creek					
Subtotal					
		· · · · · ·		1.1	0- 1
TOTAL				44,000	89,600


1/ Total 1, 2, 3, and irrigated pasture combined. 2/ Irrigated lands were detailed in 1964 and part of the nonirrigated lands. 3/ Includes group 1 Indian land, designated by E. L. Decker.

4,,	tory or pottent									
		Irrigated								
			Not							
Class 1	Cless 2	Class 3	classified and class 6	Sub- total	Class 1	Nonirr Class 2	igated Class 3	Subtotal	Estimated land	Total
					10,000	60,000		70,000		70,0 22,0
			1,000	1,000	2,000	19,000		21,000		22,0
	20,000	19,000	12,000	51,0003/		7,000	3,000	10,000 <u>3</u> /	8,000	69,0
	2,000 12,000	1,000 27,000	15,000	3,000 <u>3/</u> 54,000 <u>3</u> /		5,000	5,000	10,0003/	1,000 7,000	14,0 61,0 8,0
			·	-	2 000	3,000		3,000	5,000	0,8 0 , 10
					1,000 3,000	10,000 11,000		11,000 14,000		11,0 14,0
	(00		1,000	1,000	0,000	_,			1,000	2,0 2,0
	600	700	700 1,000	2,000 1,000						2,0 1,0
	34,600	47,700	30,700	113,000	16,000	115,000	8,000	139,000	22,000	1,0 274,0
			3,000	3,000	3,000	7,000	14,000	24,000		3,0 24,0
3,000	8,000	9,000	4,000	24,000					6,000	30,0 61,0
2,000				2,000	12,000 1,000	41,000 23,000	6,000 14,000	59,000 38,000		61,0 38,0
				_	3,000	7,000		10,000		10.0
4,000	2,000	2,000		8,000	18,000	29,000	25,000 2,000	72,000 30,000		80,0 30,0
18,000	5,000			23,000	5,000 28,000	23,000 86,000	27,000	141,000		80,0 30,0 164,0 1440,0
27,000	15,000	11,000	7,000	60,000	70,000	216,000	68,000	374,000	6,000	440,0
			5,000	5,000					30,000	35,0
			10,000 21,000	10,000					15,000 30,000	25.0
			4,000	21,000 4,000					10,000	14,0
			40,000 62,000 <u>1</u> /	40,000 62,0001/	3 000	17 000	8,000	27,000	85,000	51,0 14,0 125,0 89,0 8,0
			02,0000_		2,000 3,000	17,000 5,000		8,000		8,0
17,000	40,000	3,000		60,000	5,000	19,000	29,000	53,000		113,0
17,000	40,000	3,000	102,000	162,000	10,000	41,000	37,000	88,000	85,000	335,0
			106,000	106,000	6,000	25,000	3,000	34,000		140,0
			17,000	17,000	2,000	23,000		25,000		42,0
					· · _ · · · · ·					
44,000	89,600	61,700	262,700	458,000	104,000	420,000	136,000	660,000	113,000	1,231,0
								2,400		2,4 1,1
								1,100 1,400		1.4
								10,500		10,5 6,5 1,9 3,7 1,5 29,0
								6,500 1,900		روت 1-9
								3,700		3,7
·								1,500		1,5
<u> </u>								29,000		
44,000	69,600	61 ,70 0	262,700	458,000	104,000	420,000	136,000	689,000	113,000	1,260,0
	<u> </u>	·		······································			· · · · · ·			

Central Utah project - Ultimate phase Inventory of potential land

					April 1965
					Area
Nonirri	reted		Estimated		to be
88 2	Cless 3	Subtotal	land	Total	classi- fied
				- 	
,000,		70.000		70,000	100,000
,000		70,000 21,000		22,000	100,000 60,000
-				,	
,000	3,000	10,0003/	8,000	69,000	150,000
,000	5,000	10,003/	1,000	14,000	30,000
,000		3,000	7,000 5,000	61,000 8,000	111,000 12,000
,000		11,000	<i>y</i> y ooo	11,000	23,000
,000		14,000		14.000	18,000
			1,000	2,000	4,000
				2,000 1,000	4,000 2,000
,000	8,000	139,000	22,000	274,000	514,000
				2 000	7 ~~~~
,000	14,000	24,000		3,000 24,000	7,000 32,000
,000	24,000	24,000	6,000	30,000	40,000
,000	6,000	59,000	•	61,000	104,000
,000	14,000	38,000		38,000	165,000
,000 ,000	05,000	10,000		10,000	13,000
,000	25,000 2,000	72,000 30,000		80,000 30,000	105,000 73,000
,000	27,000	141,000		164,000	600,000
,000	88,000	374,000	6,000	440,000	1,139,000
			30,000	35,000	45,000
			15,000	25,000	30,000
			30,000	51,000	55,000
			10,000	14,000 125,000	20,000
,000	8,000	27,000	85,000	89,000	150,000
,000	0,000	8,000		8,000	17,000
,000	29,000	53,000		113,0002/	420,000
,000	37,000	88,000	85,000	335,000	737,000
,000	3,000	34,000		140,000	170,000
,000		25,000		42,000	217,000
,000	136,000	660,000	113,000	1,231,000	2,777,000
		a luoo		2,400	2,400
		2,400 1,100		1,100	1,100
		1,400		1,400	1,400
		10,500		10,500	10,500
		6,500		6,500	6,500
		1,900 3,700		1,900 3,700	1,900 3,700
		1,500		1,500	1,500
		29,000		29,000	29,000
,000	136,000	689,000	113,000	1,260,000	2,806,000

White Rivers near Ouray, Uintah County. The remainder of the area lies in a narrow strip along the east side of the Green River extending to the mouth of Willow Creek.

A land survey was made of this area by the Bureau of Reclamation in connection with the Colorado River investigation, showing about 22,000 acres of arable land, 1,000 acres of which was irrigated. Most of the arable land was found in small areas or blocks, either along the rivers and streams or above them on the low benches and terraces. The soils are mostly medium-textured alluvium. Their salinity content is low except in small areas where the surface layers have accumulated some soluble salts. These could be readily leached from the soils upon irrigation.

The elevation of the Green and White Rivers area averages around 4,500 to 4,600 feet. The growing season is similar to that of Ouray, 167 days from April 23 to October 6.

Roosevelt Area

The Roosevelt area is located in northeastern Utah in Duchesne and Uintah Counties and lies on both sides of the Uinta River. The land extends from the town of Randlett to Whiterocks and includes 69,000 acres which are either irrigated or arable. A reconnaissance-type land classification of these and other lands in the Uinta Basin was made by the Bureau of Reclamation in 1962-63.

The lands occur on terrain characterized by narrow ridges and valleys, on high elevated undulating bench lands, on moderately sloping alluvial fans, and on gently sloping river terraces. The soils are alluvial, having textures that range from fine to coarse, and are deepest in the valleys and shallowest on the elevated benches.

Salinity is a problem in much of the area due to unfavorable subsurface conditions, lack of drains, and poor management. The soils are usually underlain by impermeable saline shale and sandstone although intervening gravelly substrata show in some localities.

The elevation of the Roosevelt area ranges from 4,990 feet at Fort Duchesne to over 5,600 feet at Whiterocks. The growing season averages 159 days, from May 3 to October 8, at Fort Duchesne, to around 157 days, from May 8 to October 11, at Neola.

Ouray Area

The Ouray area comprises land east of the Uinta and Duchesne Rivers and west of the Green River. The confluence of the Duchesne and Green Rivers near the town of Ouray marks the southern boundary. It is roughly triangular in shape and extends approximately 12 miles northward from its apex at this confluence of the two streams.

PROJECT LANDS AND DRAINAGE

A land classification survey of this area was made in 1963 by the Bureau of Reclamation showing a total of about 14,000 acres of arable land in this area, of which about 3,000 acres are presently irrigated.

The lands occur on moderately sloping alluvial fans, old alluvial benches, and on low stream terraces and foot slopes. The alluvial soils making up the gently sloping fans have been deposited from the adjacent mountains upon the deep layers of shale of the Uintah formation. The glacial outwash, deposited over the uneven shale surface of the bench lands, consists primarily of water-rounded quartzitic rocks and boulders over which a layer of finer alluvial material has been deposited. Soils on the benches have been formed from these materials. The soil textures are generally medium to coarse. Many of the surface soils on the low stream terraces are sandy and have been shifted considerably by wind action.

The salinity content is generally low in the nonirrigated areas but rather high on the inadequately drained irrigated lands. The elevation of Ouray area ranges from 4,600 to 4,900 feet. The growing season at Ouray averages 167 days, extending from April 23 to October 6.

Lake Fork Area

The Lake Fork area is located in northeastern Utah in Duchesne County and lies on both sides of the Lake Fork River. The city of Roosevelt is on the southeastern extremity, and the lands about 4 miles northwest of Mountain Home make up the northwest boundary. The lands cover approximately 61,000 acres which are either irrigated or arable. A land classification of the area was made by the Bureau of Reclamation in 1963.

The lands occur on terrain characterized by narrow ridges and valleys, on elevated undulating bench lands, on moderately sloping alluvial fans, and on gently sloping river terraces. The soils are alluvial, having textures that range from medium to coarse. The salinity content is low on the bench lands, but there are definite indications of sodic conditions in some areas. The soils are underlain by cobble, cemented by calcium carbonate on the higher bench lands over impermeable saline shale and sandstone. Intervening gravelly substrate show in some localities.

The elevation of the Lake Fork area ranges from 5,100 to 6,100 feet. Roosevelt has an average growing season of 176 days, extending from April 19 to October 12, while Altamont's average growing season is 170 days, between April 25 and October 12.

Leland Bench Area

Leland Bench is an area bounded on the north and east by the Duchesne River. The area is about 3 miles wide and extends west about 5 miles and south about 6 miles from the confluence of the Duchesne and Uinta Rivers. A survey was made of this area in connection with the Colorado River

investigations of lands in the Upper Colorado River Basin. Under this survey 8,000 acres of arable nonirrigated land were designated.

Leland Bench is a series of old alluvial benches deposited over the uneven shale surface and consists primarily of water-rounded quartzitic rocks and boulders over which a layer of finer alluvial material has been deposited. Soils on the benches have been formed from these materials. The soils are medium to fine textured and have developed under the influence of a semiarid continental or inland climate. They are only moderately matured, showing slight horizontal development, fairly well defined lime zones, and are rich in mineral plant nutrients.

Some saline conditions occur in these soils which could probably be readily alleviated by irrigation. The soils are underlain by generally impermeable shale and layers of calcium carbonate. Large cobble and rock, cemented by calcium carbonate, are near the surface at the edges of the bench, thus restricting natural drainage.

The elevation of the Leland Bench area ranges from 5,100 to 5,200 feet. The growing season at the town of Ouray averages 168 days, from April 23 to October 10.

Pariette Bench Area

Pariette Bench area in Uintah County lies about 12 miles west of Ouray. It is bordered on the south by the west Tavaputs Plateau and begins about 5 miles southeast of Pleasant Valley. The Green River flows about 4 miles to the southeast of the area. A survey of this area was made by the Bureau of Reclamation in connection with the Colorado River investigation, showing about 11,000 acres of arable, nonirrigated lands. The lands occur in fairly large blocks on low benches dissected by stream action. The soils are alluvial, having textures that range from medium to coarse. Their salinity content is moderate to low. The soils are usually underlain by impermeable saline shale although intervening flat, platy, gravelly substrata show in some localities.

The elevation of the Pariette Bench area ranges from 5,000 to 5,200 feet. The growing season recorded at the town of Ouray averages 168 days, from April 23 to October 10.

Blue Bench Area

The Blue Bench area extends north approximately 10 miles from the city of Duchesne and averages about 5 miles in width. The Duchesne River forms the western boundary of the area for about 6 miles above Duchesne.

A survey was made of this area by the Bureau of Reclamation in connection with the Colorado River inventory of lands in the Upper Colorado

River Basin. An estimated 14,000 acres of arable land were surveyed during this investigation.

The Blue Bench is made up largely of a series of mesas of different levels. The soils on the lower mesas are typical mesa soils. The surface soils are mostly loams and sandy loams. A heavy lime layer is encountered at depths ranging from 18 to 42 inches in scattered areas. In the northern part the soils are distinctly recent alluvial sands and sandy loams derived largely from the red sandstone which borders the area.

In the southeastern part of the area the bench narrows rapidly. With the exception of some deep gulches and a few narrow ridges, the relief varies from lightly rolling topography to even gentle slopes. The salinity content is low in this area with very few drainage problems.

The elevation of Blue Bench ranges from 5,800 to 6,000 feet. The growing season at Duchesne City averages 164 days, from April 28 to October 9.

Fruitland Area

Fruitland is a small area adjacent to the town of Fruitland in western Duchesne County and is about 25 miles west of Duchesne City along U.S. Highway 40. An estimated 2,000 acres of arable land occur in this area, of which 1,000 acres are irrigated. An inspection survey was made of this area in connection with the Colorado River investigation.

The lands occur in small blocks on terrain characterized by rolling hills and contrasting slopes. The soils are medium textured, alluvial material deposited over substrata of sandstone and shale. Their salinity content is moderate to high in the poorly drained low-lying areas.

The elevation of Fruitland is about 6,500 to 6,600 feet. It is estimated that Fruitland has an average growing season of 135 days.

Strawberry River Area

The lands of this area lie along the Strawberry River beginning at the city of Duchesne and extending upstream approximately 30 miles to near the Duchesne-Wasatch County line. A land classification of this area was made by the Bureau of Reclamation in 1956 in which about 2,000 acres were designated as arable.

The arable lands occur in narrow strips on either side of the Strawberry River where the canyon becomes broad enough to permit cultivation. The soils have been derived from stream deposits and are medium to coarse in texture. The salinity of these soils is relatively low except near Duchesne where the lands flatten out and are inadequately drained.

The elevation varies from 5,500 feet at Duchesne to 6,800 feet at the upper extremities. The growing season varies from 164 days at Duchesne to about 130 days at the higher elevations.

Nine Mile Area

The Nine Mile area is located in southern Duchesne County along Nine Mile and Minnie Maud Creeks. Water from these creeks flows into the Green River. The arable lands lie in long narrow strips adjacent to these creeks at the base of the high West Tavaputs Plateau. About 1,000 acres of irrigated land are in this area.

The lands occur in narrow strips along Minnie Maud and Nine Mile Creeks where the canyons widen sufficiently to make cultivation permissible. The alluvial soils have been deposited by streams that have cut deep into the surrounding mountains. These soils are mainly medium textured with a low salinity content.

The elevation in this area ranges from around 5,500 to 7,000 feet with an estimated 100- to 120-day growing season. The growing season **va**ries depending on elevation.

Wallsburg Area

The Wallsburg area is located in Wasatch County surrounding Wallsburg, Utah, south of Deer Creek Reservoir. Entrance into the area is via U.S. Highway 189 between Provo and Heber.

No land classification survey of the area has been made. Acreage estimates for the inventory studies were made from a land use survey conducted by the Bureau of Reclamation in 1950. The survey indicated a total of 3,000 acres of irrigated and estimated arable land in the area.

Soils of the Wallsburg area have developed primarily from alluvial outwash material eroded from the sedimentary deposits of the surrounding mountains and transported into place by local streams. Most of these soils are underlain by gravel, cobble, and boulders. The alluvial fans produced by local streams contain the bulk of the arable land. Textures of the soils range from sandy loams to clay loams. The salinity in the area is low with few problems due to drainage.

The elevation of the Wallsburg area ranges from 5,800 to 6,000 feet. The growing season averages around 137 days.

Bingham Area

The Bingham area is on the east slope of the Oquirrh Mountains in Salt Lake County about 11 miles southwest of Salt Lake City. The Bingham branch of the Denver and Rio Grande Western Railroad and Utah Highway

No. 48 from Salt Lake City to the Bingham Copper Mines crosses the area. A survey of this area was made in connection with the Colorado River-Great Basin survey. A total of 24,000 acres of nonirrigated arable land were found.

The major portion of the Bingham area is made up of broad gentle slopes interrupted frequently by low terraces that correspond to the stationery levels of the prehistoric Lake Bonneville. Above these pediment slopes and adjacent to the mountains are steeper alluvial fans and rough hills. The textures range from medium to fine, going from the higher to lower regions within the area. The natural drainage of the area is good except for those finer-textured soils where, under irrigation, the need for artificial drainage may develop. The topsoils are relatively free from alkali although some of the subsoils contain concentrations of soluble salts.

The general elevation of the Bingham area is 4,700 to 5,100 feet. The growing season is estimated at about 190 days.

Lehi Area

The Lehi area includes those lands north of Utah Lake extending to the Salt Lake County line on the north, the Wasatch Mountains on the east, and across the Jordan River to the Lake Mountains on the west.

The soils were formed primarily from lacustrine deposits. Rivers and other entrant streams have deposited coarser materials over the lacustrine sediments, resulting in more favorable textures. The soils of the area are generally medium to fine textured. The arable lands are for the most part free of excessive concentrations of salinity and alkalinity.

About 24,000 acres of land are irrigated in this area and about 6,000 acres are nonirrigated arable lands. The Bureau of Reclamation made a reconnaissance classification of part of the area in 1948. Since then an estimate was made by the Bureau of the remainder of the area.

The elevation of the land ranges from about 4,500 to 5,100 feet. The growing season of the area averages 187 days, from April 12 to October 16.

Cedar Valley Area

This area is situated in Cedar Valley immediately west of Utah Lake and is separated from the lake by the low Lake Mountains. The valley is enclosed and has no drainage outlet. Drainage water collects on and is evaporated from the valley floor at a low spot designated as the "Sinks."

A survey of Cedar Valley lands was made by the Bureau of Reclamation as part of the Colorado River-Great Basin survey. According to this survey, the valley has approximately 61,000 acres of arable land.

The structural basin was filled primarily with alluvium from the surrounding mountains, but present topography and parent material of the soils are principally a result of the action of ancient Lake Bonneville. Light silt loams of open structure and uniform profiles constitute the major part of the more gently sloping fans and plains. The land of low gradient has somewhat restricted drainage conditions and contains moderate to excessive amounts of alkali.

The elevation of the arable lands of the valley varies from 4,850 to 5,300 feet. The average growing season for the area is from May 5 to October 15 or 164 days.

Cherry Valley Area

Cherry Valley area is located in Juab County except for one small portion extending into Tooele County. The Sheeprock and Simpson Mountains lie to the north of the area. The West Tintic Mountains and the rolling sand dunes to the south of these mountains separate this area from the Delta and Tintic Valley areas. This area was classified by the Utah Agricultural Experiment Station and the Bureau of Reclamation in conjunction with the Colorado River-Great Basin survey. About 38,000 acres were considered arable in this survey.

The area is made up of badly eroded alluvial fans, bench lands, and nearly flat, lacustrine plains extending south from the northwest corner through the Cherry Valley area. Textures of the soils range from coarse to medium on the alluvial fans and bench lands to rather fine textures on the lacustrine plains. Moderate to heavy accumulations of saline salts are characteristic of much of the area, especially the bottom lands.

The general elevation of the Cherry Valley is 4,600 to 4,800 feet. The growing season for the area has not been established, but for this study it has been assumed at 170 days, from April 23 to October 9, the same as the Delta area.

Dog Valley Area

Dog Valley is a small isolated valley about 10 miles west of Nephi. Utah Highway No. 132, which crosses the area, is the only public-maintained road. The Utah Agricultural Experiment Station and the Bureau of Reclamation Colorado River-Great Basin survey designated 10,000 acres of land in the area as arable.

This area is a small structural valley formed during the general uplift of the East Tintic Mountains which also isolate it from adjacent areas. The valley fill is made up of alluvial and colluvial deposits of debris from these mountains. The general topography is slightly undulating adjacent to the main drainageways and rolling to rough throughout the

rest of the area due to erosion. The soils are generally coarse textured with structures usually open and readily penetrable to water.

The salinity of the Dog Valley area is low due to the character of the parent material and generally good drainage conditions. The elevation of the area extends from 5,500 to 5,600 feet. The growing season has not been established, but for this study it has been assumed at 170 days, from April 23 to October 9, the same as the Delta area.

South Juab Area

The South Juab area is located in the southern section of Juab County and the southwestern section of Sanpete County and is situated geographically near the center of the State of Utah. Levan on the north and Fayette on the south are the two towns located within the area. A survey was made in conjunction with the Colorado River-Great Basin survey which designated 80,000 acres as arable.

The lands of the South Juab area are long narrow strips formed on coalesced alluvial fans that extend from the foothills down both sides of the valley and extend out and over the lacustrine deposits of the valley floor. The soils of the valley floor are fine textured while those of the alluvial fans are of a medium to coarse texture. The alluvial soils have adequate natural drainage characteristics. The lands range in elevation from 4,900 to 5,200 feet above sea level and the growing season averages 200 days.

Tintic Valley Area

The Tintic Valley area in Juab County includes those lands from Jericho south to Juab-Millard County line about 2 miles north of Learnington. The area was included in the Colorado River-Great Basin survey accomplished by the Bureau of Reclamation in conjunction with the Utah Agricultural Experiment Station. Under this survey 30,000 acres were considered arable.

The soils generally are fairly uniform and coarse textured with some areas exhibiting slight to moderate lime development. Sporadic accumulations of saline salts occur within the area.

The elevation of the Tintic Valley area averages 5,300 feet. The growing season has not been established, but for this study it has been assumed at 170 days, the same as the Delta area.

Holden-Fillmore Area

The Holden-Fillmore area is vest of the Canyon and Pavant Mountain ranges and east and south of the Delta area. Holden, Fillmore, and Kanosh are three towns located in this area and U.S. Highway 91 runs through the area.

PROJECT LANDS AND DRAINAGE

The area comprises alluvial fans reaching toward the valley floor from the Pavant Mountain range. The alluvial fans are medium in texture and usually show good drainage and little or no alkali. The lacustrine plains in the valley floor are excessively alkaline, generally very fine textured, and have inadequate drainage outlets.

The land was classified in connection with the Colorado River-Great Basin survey, resulting in about 164,000 arable acres.

The elevation of the Holden-Fillmore area averages 5,200 feet with an average growing season of 176 days, extending from April 25 to October 17.

Upper Sevier River Area

The Upper Sevier area is composed of four separate, small areas and includes those arable lands between the Koosharem Reservoir in Sevier County to the Otter Creek Reservoir in Piute County, the East Fork of the Sevier River in Garfield County, the South Fork of the Sevier River in Garfield and Piute Counties, and below the Piute Reservoir to below Marysvale in Piute County.

An estimated 125,000 arable acres are in the Upper Sevier area. These figures are based upon a crop census of the area since no formal land survey has been made.

The long narrow valleys are made up of alluvial deposits from the Sevier River and mountain streams. These alluvial soils are medium textured except in the valley floors where they are medium to fine. Because of the general grade and good natural drainage, salinity is not a problem in most of the area.

The elevation of the Upper Sevier area has a wide range with 6,720 feet at Panguitch and 5,900 feet at Piute. The average growing season at Panguitch extends from June 1 to September 14 with 105 days and at Piute May 6 to October 6 or 154 days.

Central Sevier Area

The Central Sevier area is contained in the long Sevier River Valley, having an average width of 5 or 6 miles, and is bounded on the west by the Pavant Range and on the east by the Sevier and Wasatch Plateaus. This area extends north and east from Joseph about 67 miles to Gunnison. The Sevier River meanders the full length of the valley and is joined at Gunnison by the San Pitch River from Sanpete Valley. About 89,000 acres of arable land, most of which is under present crop land, are in this area. The area was included in the Colorado River-Great Basin survey.

The valley is made up of alluvial deposits from the surrounding hills. The soils of the alluvial fans as a whole are medium to coarse in texture, show little profile development, and usually exhibit a soft crumb structure. The salinity of the area is generally low except in areas adjacent to the Sevier River. Here better drainage practices could alleviate much of the problem. The elevation of the Central Sevier area averages about 5,300 feet with a 150-day growing season.

Sevier Bridge Pump Area

The Sevier Bridge pump area is between the Sevier River and the Canyon Mountains. The area lies between Levan and Scipio along U.S. Highway No. 91. Since this area is higher in elevation than the Sevier River, pumping of irrigation water will be required either from Sevier Bridge Reservoir or from the river. As with other areas in the vicinity, a survey of the lands was made by the Bureau of Reclamation and the Utah Agricultural Experiment Station as part of the Colorado River-Great Basin survey, showing about 8,000 acres of arable land.

This area was formed by alluvial and colluvial deposition, principally from formations of sandstone and limestone, from the mountains to the west. The eastern edge of the area is rough and badly eroded. The southern portion is a broad, gently sloping expanse of alluvial fans separated by low rolling hills from the northern part which is composed of a narrow valley and a narrow bench. The soils range in texture from light silt loams to sandy loams and exhibit uniform profiles except on the low rolling hills where the soils contain excessive amounts of rock and gravel and have a pronounced compact lime zone showing varying degrees of cementation.

The elevation of the Sevier Bridge pump area ranges from 5,000 to 5,200 feet. The growing season is estimated to be about 200 days.

Delta Area

The Delta area is in the northeastern part of Millard County in west-central Utah. Delta is the largest commercial center of the area and is served by the Los Angeles-Salt Lake branch of the Union Pacific Railroad and U.S. Highway No. 6. The Colorado River-Great Basin survey originally covered all of the Delta area. In 1964 a detailed land classification was made of part of the area by the Bureau of Reclamation. A combination of these surveys shows a total of 113,000 acres of arable land, 60,000 acres of which are presently irrigated. The old Colorado River survey was used only for the lands not included in the recent classification.

Great depths of alluvium were initially deposited on the floor of this large valley by the Sevier River and local streams from the adjacent hills. The mantle of fine material laid down by the ancient lake

PROJECT LANDS AND DRAINAGE

covers nearly the entire area. Migratory sand dunes make up the southern portion of the area north of the Sevier River where they extend to the foothills. The alluvial fans on the western side of the valley have coarse-textured soils, generally uniformly calcareous profiles, and moderate to excessive amounts of alkali. Sandy soils, usually containing appreciable amounts of gravel, are characteristic of the Lynn Bench in the Delta area. The soils of the desert floor are finer, varying from light silt loam to clay, and have a high concentration of alkali.

The elevation of the Delta area is from 4,700 to 4,800 feet with an average growing season of 170 days.

San Pitch River Area

The San Pitch River area is in Sanpete Valley in the center of the State of Utah, extending north about 50 miles from Gunnison. The San Pitch River and its tributaries flow through this valley. The area was included in the Colorado River-Great Basin survey by the Utah Agricultural Experiment Station and the Bureau of Reclamation. Under this survey 140,000 acres were considered arable.

Broad alluvial fans and slopes of low gradient extend from the foothills to the flood plains of the San Pitch River except for some steeper fans on the west and the more rolling terrain in the north. The upper portions of the alluvial fans are very rocky and gravelly. The central and outer portions of the fans are free from gravel or rock, show medium textures, and due to good drainage are relatively free from alkali. The very gently sloping central portion of the valley along the San Pitch River varies, with textures ranging from sand to slowly permeable clay, structures from single grain to massive, and little to excessive alkali.

The general elevation of the San Pitch River Basin is 5,500 to 5,600 feet with an average growing season of 165 days, from May 12 to October 3.

Price River Basin Area

The Price River Basin is located in the east-central part of the State of Utah, mostly in Carbon County. U.S. Highway No. 50 runs through the area and Price City is its largest community. The lands included lie adjacent to the Price River and those areas which could be reached through canal systems diverted from the river. Some small creeks and streams flowing into Price River have adjacent lands which are included. The old Colorado River survey included this area and designated about 42,000 acres of land as arable.

Soils of the area are principally alluvial. The arable lands were developed primarily from alluvial material derived from sandstone, limestone, and shale deposited as gently sloping fans extending from the foothills to the valley floor. This alluvial material varies in depth from

PROJECT LANDS AND DRAINAGE

several inches to about 60 feet. The residual soils, formed in place through weathering of shale material, are shallow and of low quality. The soils of the area are generally of medium texture. They have moderate permeability, good available moisture capacity, and a relatively low content of salinity and alkalinity.

The average elevation of the Price River Basin area is 5,500 to 5,600 feet. The average growing season at Price is from April 26 to October 19 or 178 days.

Indian Lands

Indian lands included in the ultimate phase are situated in eight small areas in the Uinta Basin. Estimated acreages of these areas have been obtained from a report entitled "Preliminary Report, Proposed Participation in Central Utah Project by Uintah and Ouray Indian Reservation, Utah," by E. L. Decker dated July 5, 1960, revised October 1, 1961. This report shows a total of 29,000 acres of nonirrigated land contained in the eight areas.

Drainage Inventory

The drainage inventory includes a summary of existing and anticipated drainage conditions that are available for the potential land areas. Drainage investigations conducted to date are also presented and future investigations listed that may be required for ultimate phase development. A complete evaluation of project drainage conditions is not possible because of the lack of available information.

Bonneville unit lands have not been included in this drainage inventory. A detailed drainage investigation was included in the 1964 definite plan report for all areas except the Sevier River area. Additional studies have also been made in 1964 and 1965 in the Provo Bay area to firm up the drainage plan and cost estimate as presented in the 1964 definite plan report of the Bonneville unit. A report of detailed investigations of these two areas will be included in a supplement to the Bonneville Unit Definite Plan Report scheduled for completion in 1966.

Detailed drainage investigations have also been initiated but not completed by the Bureau of Reclamation on the Uintah unit of the ultimate phase. The other potential areas considered in this report have not been investigated in detail by the Bureau of Reclamation and the drainage conditions presented were obtained from any available sources, including observations and cursory studies completed by other agencies. No drainage information is available for some of the areas considered.

A detailed drainage investigation will be required on all areas selected for the ultimate phase development. The scope of these investigations will vary for each of the areas according to the differences in

depth to water table, type of subsurface material, depth to and type of barrier zones, size of irrigated area, topography, and water supply.

Areas

Drainage conditions are discussed briefly below for each of the potential land areas. The information, when available, is presented in the following order: existing drainage conditions, potential conditions with ultimate development, drainage investigations to date, and future investigations required.

Deadman Bench Area

No irrigation exists on the lands of this area and there are no known water tables at present. The shallow soil over shale and sandstone in much of the area will be conducive to numerous drainage problems under potential development. No reports of drainage investigations are available.

Green and White Rivers Area

Approximately 1,000 acres of presently irrigated land on the bottom lands along the rivers are believed to have some drainage deficiencies. Additional development may increase the drainage problems on these river bottom lands and could produce new problems on the bench lands that have shallow alluvial soils over shale. Detailed drainage investigations will be required prior to project development.

Roosevelt Area

High water tables occur on about 40 percent of the 51,000 acres of presently irrigated non-Indian land, Approximately three-fourths of the high water table land is situated on cobble-covered benches and river terraces which have generally shallow soils overlying the cobble. The high water table bench and terrace lands are not considered drainage deficient because of the stable pasture-livestock economy established there. This economy indicates adequate natural drainage capacity under existing conditions and use. Any potential drainage deficiency under ultimate development has not yet been determined. Approximately 6,000 acres of the irrigated high water table lands are considered either presently or potentially drainage deficient. These lands are located in the valleys and on the benches with deeper soil over cobble. These lands were classified as drainage deficient but may be reclaimed, if feasible, to an arable class. The feasibility of draining them has not yet been determined.

Under potential development most of the bench and terrace lands may not require artificial subsurface drainage. It is anticipated, however, that the drainage deficiency existing in the valley lands may spread to

PROJECT LANDS AND DRAINAGE

adjacent irrigable lands with an additional water supply. It will therefore be necessary to provide project drainage for the present potentially deficient lands that are deemed feasible of drainage under a project plan.

A detailed drainage investigation was about half completed in 1963 in this area by the Bureau of Reclamation. This study will be completed in 1966 and will be reported in detail in the forthcoming Uintah Unit Feasibility Report. No prior drainage investigations have been made of the Roosevelt area.

Ouray Area

The 1963 land classification of the Ouray area shows about 3,000 acres of presently irrigated land, of which approximately 1,300 acres were designated as definitely drainage deficient. The drainage problems are located primarily in the central part of the area in a 3-mile by 3-mile triangular shaped area in the valley north of Pelican Lake. Minor problems exist on the north bench and in a small area below Pelican Lake.

Additional irrigation water provided by potential development would aggravate the existing drainage problems on presently irrigated land. New drainage problems would probably be created on a substantial part of the full service lands. Both presently irrigated and new lands will probably have some drainage requirement. The magnitude of the requirement will depend somewhat on the type of irrigation used. Both surface and sprinkler irrigation should be considered on new lands because of the complex combination of soil, topographic, and subsurface characteristics in part of the area. The sprinkler systems will create fewer drainage problems than surface irrigation. The combination of adverse soil, topographic, and subsurface characteristics that produce drainage deficiencies in parts of the area may preclude drainage reclamation.

No specific drainage investigations were made prior to 1963. Detailed drainage investigations have been initiated on this area and will be completed by the Bureau of Reclamation and will be reported, with the Roosevelt area, in the Uintah Unit Feasibility Report.

Lake Fork Area

In the Lake Fork area about 54,000 acres are presently irrigated and approximately 40 percent of this acreage has a shallow water table condition. As in the Roosevelt area, approximately 80 percent of the high water table lands are situated on cobble-covered benches and produce meadow pasture and hay which are part of a stable pasture-livestock economy. The shallow water tables are a benefit to this type of economy, and these lands are not considered to be drainage deficient. Drainage of these lands is presently considered neither desirable nor feasible in view of their established land use. The balance of the shallow water table lands primarily in the valleys and on parts of the North Myton Bench is considered drainage deficient, but part may be correctible to an arable class under ultimate development if future investigations prove drainage to be feasible. Supplemental water to be supplied to this area by the Upalco unit, Central Utah project, initial phase, will be about 0.36 acre-foot per acre but is not expected to alter the present stable drainage status of the area.

No drainage requirements are anticipated under potential development for the lands with shallow cobble which support a pasture-livestock economy. Drainage may be required for the remainder of the lands with deeper soils and correctible drainage deficiencies under ultimate phase development.

A reconnaissance land classification was made in 1962 and 1963 for the Upalco unit in which drainage-deficient land was placed in a class commensurate with the percent productivity. It was assumed that no drainage would be provided for the Upalco unit, thus a large part of these lands were placed in class 6. No formal drainage investigations were made in connection with the land classification since only small amounts of supplemental water will be provided under the Upalco unit. Prior to ultimate phase development a full-scale drainage investigation will be required. The presently drainage-deficient lands may be placed in a higher class if future investigations show drainage to be feasible as part of the ultimate phase.

Leland Bench Area

No presently irrigated lands and no known water tables exist on Leland Bench. Potential development with addition of irrigation water will probably create drainage problems because of the shallow depth of alluvial material over shale and the complex topographic conditions. Formal drainage investigations have not been conducted in the area.

Pariette Bench Area

As on the Leland Bench no presently irrigated lands are in this area and it is not known if ground water tables are present. Drainage problems are anticipated because shallow soils and lands in the area are in relatively large blocks and irrigated slopes would be long. The area has not been investigated for drainage characteristics.

Blue Bench Area

The Blue Bench area north of Duchesne contains no known ground water tables and no irrigation is presently practiced. The alluvial soils of this area are generally shallow to cobble and are often underlain at shallow depths by hardpan layers and at greater depths by shale material. Drainage problems are anticipated under these conditions with potential development. Formal drainage investigations have not been conducted in this area but will be required prior to development.

Fruitland Area

Approximately half of the small Fruitland area, or about 1,000 acres, is presently irrigated; however, little is known about the present drainage conditions. Some drainage problems are anticipated with potential development.

Strawberry River Area

The land classification of 1956 designated about 2,000 acres as irrigated. About 300 acres are considered to have high water tables. Additional drainage problems are anticipated with potentail development. Detailed drainage investigations have not been conducted in this area.

Nine Mile Area

Nine Mile is a small area containing about 1,000 acres of irrigated land, but little is known about the present drainage conditions or the ground water tables. Under further development many drainage problems are anticipated.

Wallsburg Area

Approximately 3,000 acres of land are irrigated in the Wallsburg area, including about 700 acres with high ground water tables. The established and stable livestock-pasture economy is well adapted to these conditions; hence no actual drainage deficiency exists. The natural drainage capacity of lands in this area is sufficient to assure continued good drainage status under the established economy with an additional water supply. No formal drainage investigations have been conducted in the area and only reconnaissance investigations will be required.

Bingham Area

No lands are presently irrigated in the Bingham area. The natural drainage is assumed to be good due to the deep, medium-textured soils and the favorable topography. The natural drainage is assumed to be adequate under potential development. Drainage problems are anticipated, however, on lower-lying irrigated lands adjacent to the eastern edge of the Bingham area. Project drainage will be required to protect these lower lands. Limited drainage investigations have been conducted by the Bureau on these lower lands, but no investigations have been made on the Bingham area.

Lehi Area

Approximately 24,000 acres of land in this area are presently irrigated, including about 4,500 acres with high ground water tables. Most of the high water table lands are located on the lower elevations adjacent to Utah Lake and are beneficially used for pasture production. The 1957 annual drainage report on the Provo River project estimated about 1,500 acres of project land affected by high ground water tables, most of which are located between the towns of Pleasant Grove and Lehi. About 850 acres were being drained through individual farm effort in cooperation with the Soil Conservation Service. No organized drainage program exists in the area.

Under ultimate development an increased water supply will probably aggravate the present drainage problems and may create additional deficiencies. The lands on higher elevations have better natural drainage capacity and will require less attention. Limited drainage investigations have been made of the area by the Bureau, including 33 water table observation wells drilled in 1960 and observed until March 1963. Soil Conservation Service personnel have helped farmers with drainage problems on an individual farm basis. No large-scale drainage investigations have been made.

Cedar Valley Area

Cedar Valley is a closed basin and the surface runoff collects in the low central part of the valley where it evaporates. The only drainage deficiencies evident are in the topographic lows. About 2,000 acres are presently irrigated around the periphery of the valley from surface sources, and a considerable area of unknown acreage is irrigated by pumping from ground water wells. The impact of this ground water development on the water table behavior in the area is also unknown.

The lack of natural outlets for surface and subsurface water will create a major problem to the lower portions of the valley. Full-scale irrigation development would increase the amount of valley low land submerged by the collection of runoff and surface waste. This would require detailed drainage investigations prior to development.

Cherry Valley Area

No lands are presently irrigated in Cherry Valley. No drainage investigations have been conducted and the depths to ground water tables are unknown. Drainage problems are anticipated with development due to fine textures of the soil and the relatively flat topography.

Dog Valley Area

Dog Valley is a small valley containing no presently irrigated land. Depths to ground water tables are unknown since drainage investigations have not been made of this area; however, some drainage problems are anticipated with development.

South Jusb Area

Approximately 8,000 acres are presently irrigated in the South Juab area. No drainage investigations have been conducted; thus little is known of the depths to ground water tables or other drainage conditions. No drainage problems are anticipated on alluvial fan soils around the periphery of the valley. Deficiencies will probably occur on the valley floor with development. These will be determined by future detailed investigations.

Tintic Valley Area

No lands are presently irrigated in Tintic Valley. Little is known about the drainage conditions or ground water tables since no drainage investigations have been conducted in the area, but some drainage problems are anticipated with irrigation development.

Holden-Fillmore Area

The 1939-40 land survey indicated about 164,000 acres of arable land in this area, of which about 23,000 acres are presently irrigated. The arable land is situated primarily on the alluvial fans along the east side of the valley. The fans have good natural drainage except at the toes where the soil is thin over lacustrine deposits of the valley floor. It is estimated that about 5,000 acres of presently irrigated land may have high water tables. Some potentially arable land lies on the valley floor, and high water tables and highly alkaline conditions are evident on these fine-textured lacustrine soils. With irrigation development it is anticipated that a comprehensive drainage system will be required for the valley floor lands. The natural drainage capacity will probably be adequate on most of the alluvial fans.

Upper Sevier Area

A reconnaissance survey made by the Bureau of Reclamation in 1964 shows approximately 40,000 acres of irrigated land along the Upper Sevier River. Of this amount about 10,000 acres are surface irrigated or subirrigated pasture land, most of which has a high ground water table.

It is anticipated that under ultimate development drainage will have to be provided for part of these high water table lands and for some lands adjacent to the high water table area. Lands on the alluvial fans of the valley slopes will be relatively free of drainage problems.

No drainage investigations of this area are available at the present time. The U.S. Department of Agriculture, including the Soil Conservation Service, Economic Research Service, Forest Service, and other Federal and State cooperative agencies are currently conducting an investigation of the Sevier River Basin for inventory purposes. Results of this investigation are not yet available except for some irrigated and high water table acreages and crop use. The report is scheduled for completion in 1966.

Central Sevier Area

Of the 62,000 acres of irrigated land in the area, about 12,000 acres are pasture land, generally with fluctuating high water tables containing varying amounts of soluble salts. These drainage-deficient lands are confined primarily to the valley floors. Lands on the sloping alluvial fans have good natural drainage capacity. Utah Agricultural Experiment Station Bulletin No. 333, January 1949, reports 10 drainage districts organized in the valley from 1916 to 1924 containing a total of 21,000 acres, but only 16,000 acres were provided with drains. Two of the districts installed no drains, two districts were dissolved, two are inactive, leaving only four active districts.

Additional drains may be required on the low lands with further development, but the alluvial fans are not expected to require artificial subsurface drainage. No detailed drainage investigations are available for this area. The U.S. Department of Agriculture report scheduled for 1966 on the Sevier River Basin should provide some useful information.

Sevier Bridge Pump Area

This area contains no presently irrigated lands. Depths to water tables are unknown and no evident drainage deficiencies exist. It is doubtful that major drainage problems would accompany ultimate development; however, detailed drainage investigations will be required.

Delta Area

Approximately 60,000 acres of land in this area are irrigated with an inadequate water supply. A long history of drainage problems exists for these lands due primarily to extremely flat surface gradients with little or no natural drainage capacity. According to Experiment Station Bulletin No. 333, approximately 81,000 acres are within four drainage districts, of which about 47,000 acres have regularly participated in bond payments. About 21,000 acres in the districts have been abandoned because of water shortages, salinity, drainage deficiencies, or other reasons for which tax payments became delinquent.

About 600 miles of closed drains were installed from 1914 to 1918 after the drainage districts were organized. Most of these drains were effective during the first few years but later became inoperative due to faulty design or construction, lack of maintenance, and in some cases drains were purposely plugged to conserve water in the low water years during the 1930's. During the 1940's and early 1950's the area received a better than average water supply which again created many drainage

problems. As a result, during this period approximately 250 miles of open drains were installed or rehabilitated. Although this amount of artificial drainage appeared to maintain reasonable crop production, it is believed that there still exists a sizable drainage deficiency in the area during good water years. The past 10 years in the Delta area represent a dry cycle during which the existing drainage facilities have been adequate for controlling ground water levels.

Additional drainage problems are anticipated with ultimate development, particularly on lands not now adequately drained. Artificial subsurface drainage of the lands is possible but will require adequate investigation, design, construction, and good maintenance practices in order to effectively control the water tables and provide the proper leaching of salts from the soils.

The Bureau of Reclamation began initial phase drainage investigations in 1964 in the area. These investigations are scheduled for completion in 1966. Some research on drainage has been done by other agencies, but it is limited to local areas and is incomplete.

San Pitch River Area

Drainage characteristics and requirements are reported in more detail in the Price and San Pitch River Basins report of December 1964. The Colorado River-Great Basin survey of the area shows about 106,000 acres of irrigated land, of which about 64,000 acres have favorable natural drainage conditions and about 42,000 acres have drainage deficiencies of varying degrees. The drainage-deficient lands are located on the low area along the valley bottom and on the lower edges of the alluvial fans near the transition zone between the fans and the valley bottom. Valley bottom lands between Ephraim and Manti are usually inundated during the early spring runoff. These lands tend to be saline with salinity increasing toward the south end of the valley.

Ultimate phase development with increased water use would not seriously affect present drainage-deficient lands. Higher water tables would be maintained for a longer period and at a higher level. The drainage-deficient area would probably be expanded as the high water table extends to adjacent areas.

Drainage of much of the valley bottom land would not be practicable because of the lack of gradients and outlets. The productive wet meadow lands, however, complement the livestock economy of the San Pitch River Basin. Detailed investigations will be required to determine the extent to which drainage would be feasible.

Price River Area

The Price River area drainage discussion is also included in the Price and San Pitch River Basin report.

The old Colorado River survey designated about 17,000 acres as irrigated land. Since that survey the irrigated acreage has been reduced to about 13,200 acres, of which about 600 acres have drainage deficiencies and consequently are affected by salt accumulations.

The drainage-deficient lands are usually in small scattered tracts at the foot of alluvial slopes where water accumulates from higher irrigated lands. See page water from irrigation canals and ditches also contributes to the water tables. These lands are used primarily as wet meadow pasture and produce low-value salt or wire grass. Drainage of these small areas would be difficult and would upset the present land use pattern and practices.

MUNICIPAL AND INDUSTRIAL WATER

Introduction

The availability and cost of municipal and industrial water appear to be major factors in determining the future rate and extent of growth and industrial expansion in Utah. Hunicipal and industrial requirements have expanded rapidly in the past two decades as a result of population increase, industrial expansion, the discovery and development of natural resources, and commercial growth. This increase has been especially pronounced along the Wasatch Front including Salt Lake, Davis, Weber, and Utah Counties and is rapidly depleting water supplies to the extent that some systems presently experience shortages in dry years. Other systems have only a small reserve of water for future growth. Limited opportunities exist to extend local supplies by installing regulation storage, developing additional ground water, converting irrigation supplies to municipal and industrial use, and other local developments. The remaining undeveloped supplies appear inadequate when compared to mounting requirements. Without substantial quantities of additional water supplies a rigid ceiling will eventually impose itself upon the growth and resource development of the state.

Continued future expansion appears to be dependent upon the Central Utah project since it is the most promising source of water to satisfy the growing requirements. The Bonneville unit of the Central Utah project will provide 79,000 acre-feet of municipal and industrial water for delivery along the Wasatch Front from Salt Lake City on the north to Nephi on the south. This water should be available by about 1975 to supplement local supplies until ultimate phase water can be developed. The ultimate phase would provide larger quantities of water to a greater part of the State, including counties in Uinta and Bonneville Basins.

The Bureau of Economic and Business Research, College of Business, University of Utah, has recently made a study of population trends and projected water requirements in Utah and adjacent areas for the Bureau of Reclamation. It was made as a basis for sound estimates of future population and other factors that affect municipal and industrial water requirements. The study is preliminary and will be reviewed and updated in the near future before it is finalized. The study develops population figures and municipal and industrial water requirements for the year 1960 and projections for the years 1980, 2000, and 2020.

Population Growth

Population projections made by the University of Utah evaluated such economic factors as location, availability of natural resources, and the

tendency toward population concentration in urban or metropolitan areas. Projected gr'wth is based on the assumption that adequate supplies of water will be available at a reasonable price. In making population projections, economists at the University analyzed historic trends of each county before applying the above economic factors. The results of this study for 19 counties in the potential ultimate phase area are shown on the following page. Numerically, Salt Lake, Weber, Utah, and Davis Counties show the largest projected growth, but percentage increases from 1960 to 2020 are greatest in Uintah, Davis, Salt Lake, and Utah Counties. New developments in oil, oil shale, phosphate, and an ever-increasing tourist business are expected to be the major stimulants in Uintah County. Continued industrial growth, closely following the historic pattern, is expected to account for increases in Salt Lake, Utah, Davis, and Weber Counties. The other 14 counties, with the exception of Carbon, will be stimulated by various types of small industry but for the most part will remain rural rather than urban, depending on an agricultural base. Carbon County is expected to grow in direct relationship to the coal industry. Utilization of coal for electric generation will be a major growth factor.

The projections indicate an average annual increase of 1.8 percent over the 1960 to 2020 period for the state which appears within reason when compared to the recent increase rate of about 2.6 percent per year. It should be recognized the projection data are preliminary and will be reviewed and adjusted periodically, especially as new developments occur.

A further projection and extension of population was made by Region 4 economists. In this study estimates made by the University of Utah were projected to the year 2050 using the 1980 to 2020 growth rate for each county. Population estimates were also made for 1970, 1990, and 2010 in an effort to show a decade growth pattern from 1960 to 2050. To make the data more pertinent hydrologically, population figures were developed for each river basin and subbasin on a county basis. A summary of this study is shown on page 117.

Bureau of Reclamation economists also estimated additional population growth resulting from development of specific and significantly new industrial expansion not adequately covered in the University of Utah study. The increase in specific developments included extraction of oil from the shale beds in Uintah County, increased coal industry for thermoelectric plants in the Carbon-Emery area and the Kaiparowits area in Kane County, and the production of marketable phosphate rock in Uintah County.

The estimated additional population associated with new industries for each county involved is shown on page 118.

	University of Utah study Potential Ultimate phase area - 1960 population and projected population data for y e ars 1980, 2000, and 2020						
pr	ojected popu	Lation data	for years 198	0, 2000, and			
		_			Percent		
	1960		ojected popul;		increase		
County	population	1980	2000	2020	1960-2020		
Beaver	4,331	4,705	5,145	5,653	31		
Carbon	21,135	28,759	48,644	53,525	153		
Davis	64,760	116,015	171,634	232,870	260		
Duchesne	7,179	7,923	8,937	9,748	36		
Emery	5,546	7,985	11,589	15,499	179		
Garfield	3,577	4,376	6,225	7,615	113		
Juab	4,597	5,925	7,093	8,116	76		
Millard	7,866	8,871	9,570	10,060	28		
Morgan	2,837	3,865	4,849	5,786	104		
Piute	1,436	1,383	1,545	1,637	í 1 4		
Salt Lake	383,035	633,332	893, 315	1,157,698	202		
Sanpete	11,053	11,645	12,713	13,451	22		
Sevier	10,565	12,869	15,635	18,711	71		
Summit	5,673	9,309	11,573	13,688	141		
Tooele	17,868	29,100	37,144	43,428	143		
Uintah	11,582	16,006	54,485	72,681	528		
Utah	106,991	162,168	237,329	318,078	197		
Wasatch	5,308	6,988	9,067	11,088	109		
Weber	110,744	176,934	252,482	320,833	190		
Total	786,083	1,248,158	1,798,974	2,320,165	195 (a ve.)		

Summery 0	population	projection	by river bas	sin and counti	es without ma
Basin and county	1960	1970	1980	1990	2000
Colorado River Basin					
Green River Subbasin					
Green River Sub-subbasin					
Carbon County					
Ducheane County	100	100	100	100	200
Emery County	1,600	1,900	2,300	2,700	3,300
Uintah County	8,200	9,700	12,000	26,300	44,700
Total	9,900	11,700	14,400	29,100	48,200
San Rafael River Sub-subbasin					
Emery County	2,600	3,100	3,900	4,500	5,700
Price River Sub-subbasin					
Carbon County	21,100	24,000	28,800	36,000	48,600
Emery County	700	800	1,000	1,200	1,500
Utah County					
Wasatch County			100	100	100
Total	21,800	24,800	29,900	37,300	50,200
Duchesne River Sub-subbasin	-				
Duchesne County	7,100	7,400	7,800	8,100	8,700
Uintah County	3,000	3,500	4,000	6,000	9,000
Wasatch County		- , .			
Total	10,100	10,900	11,800	14,100	17,700
Bonneville Basin					
Sevier River Subbasin					
Beaver County	4,300	4,500	4,700	4,900	5,100
Garfield County	1,700	1,900	2,300	2,800	3,600
Juab County	3,600	4,100	4,800	5,100	5,900
Millard County	7,900	8,200	8,900	9,100	9,600
Piute County	1,400	1,400	1,400	1,400	1,600
Sanpete County	11,000	11,200	11,500	11,800	12,500
Sevier County	10,500	10,900	12,800	13,600	15,400
Total	40.400	42,200	46,400	48.700	53,700
Provo-Jordan Subbasin					2.73.1 ***
Juab County	500	500	600	\$ 600	600
Salt Lake County	383,000	490,000	633,300	740,000	893,200
Sanpete County	100	100	100	200	200
Utah County	107,000	132,000	162,200	192,000	237,300
Wasatch County	5,300	6,000	6,900	7,700	9,000
Total	495,900	628,600	803,100	940,500	1,140,300
West Desert Subbasin	+77777	020,000	000,000	1.0,000	
Juab County	500	500	500	600	600
Tooele County	17,900	23,000	29,100	32,000	37,100
Total	18,400	23,500	29,600	32,600	37,700
Weber River Subbasin	10,100	-3,700		2000	319100
Davis County	64,800	. 85,000	116,000	140,000	171,600
Morgan County	2,800	3,200	3,900	4,200	4,800
Summit County	5,500	7,000	9,100	9,900	11,300
Weber County	110,700	140,000	176,900	210,000	252,500
Total	183,800	235,200	305,900	364,100	440,200
	105,000	237,200	50,,,,,,,	504,200	110,200
Total all basins	782,900	980,000	1,245,000	1,470,900	1,793,700

Summary of population projection by river basin and counties without ma

	Year				
2000	2010	2020	2030	2040	2050
200	200	200	200	200	200
3,300	3,800	4,500	300 5,300	6,200	300 7,300
44,700	47,100	54,700	60,900	69,800	80,700
48,200	51,100	59,400	66,500	76,300	88,300
40,200)1,100	79,400	00,900	10,500	00,500
5,700	6,300	7,400	8,900	10,500	12,400
48,600	50,000	53,500	62,500	73,000	85,200
1,500	1,600	2,000	2,300	2,700	3,200
100	100	200	200	200	200
50,200	51,700	55,700	65,000	75,900	88,600
8,700	9,000	9,500	9,900	10,500	11,100
9,000	13,000	17,000	21,000	24,000	- 28,000
17,700	22,000	26,500	30,900	34,500	39,100
5,100	5,300	5,700	5,900	6,200	6,500
3,600	3,900	4,400	4,900	5,900	7,100
5,900	6,200	6,800	7,400	8,000	8,800
9,600	9,700	10,100	10,400	10,700	11,000
1,600	1,600	1,600	1,700	1,800	1,900
12,500	12,800	13,200	13,700	14,200	14,600
15,400	16,300	18,500	24,700	22,300	24,500
53,700	55,800	60,300	68.700	69.100	74.400
600	700	700	700	800	800
893,200	1,000,000	1,157,700	1,355,000	1,583,000	1,812,000
200	200	200	300	300	400
237,300	272,000	318,100	382,000	454,000	526,000
9,000	9,800	10,900	12,200	13,800	15,50
1,140,300	1,282,700	1,487,600	1,750,200	2,051,900	2,354,700
600	600	600	700	700	700
37,100	39,000	43,400	47,900	53,000	58,500
37,700	39,600	44,000	48,600	53,700	59,200
171,600	198,000	232,900	277,000	337,000	392,00
4,800	5,000	5,800	6,400	7,100	7,900
11,300	12,200	13,300	14,600	16,100	17,80
252,500	285,000	320,000	379,000	441,000	501,000
440,200	500,200	572,000	677,000	801,200	918,700
1,793,700	2,009,400	2,312,900	2,715,800	3,173,100	3,635,400

ies without major resource development (rounded)

			Coal in	dustry
	Uintah	County	Carbon-	
	Oil shale	Phosphate	Emery	Kane
Year	development	production	Counties	County
1960		500		
1970	25,000	1,000		4,000
1980	40,000	12,000		8,000
1990	40,000	15,000		19,000
2000	50,000	16,000	6,000	21,000
2010	50,000	17,000	11,000	21,000
2020	50,000	20,000	11,000	21,000
2030	60,000	20,000	21,000	21,000
2040	70,000	31,000	25,000	25,000
2050	80,000	32,000	32,000	25,000

Population	projection	for	specific	industrial	l development

The projected population data in the above tabulation are believed to be more speculative than the base population projection and should be compared periodically with actual developments and adjusted as necessary.

Water Requirements

In projecting tentative future requirements for municipal and industrial water use, the University of Utah considered present water use, local resources, present and potential industrial and related economic development, and population trends. Briefly summarized, the procedure for making water requirement estimates was to project employment and population and apply unit water requirements to determine water needs. The water requirements were computed in two parts, industrial water reguirements and nonindustrial water requirements. Industrial water requirements were computed by multiplying a modified current water use per employee by the projected employment for each industry. The current use per employee was modified for projections on the basis that labor productivity will increase at a rate faster than the anticipated decrease in water use per unit of product. Water use per employee was assumed to increase 20 percent by 1980, an additional 10 percent by the year 2000, and an additional 5 percent by 2020. Water requirements for nonindustrial purposes including households, parks, schools, commercial establishments, etc., were assumed to increase primarily with population and were projected on the basis of population. The 1960 per capita daily water use for each county was modified for the years 1980, 2000, and 2020. An increase in daily use was assumed of 20 gallons per capita by 1980, an additional 10 gallons per capita by 2000, and an additional 10 gallons per capite by 2020. While the above was the general rule, modifications were made to conform with near average use except for local situations. The projections assume reasonably priced water would be available in sufficient quantities to meet all requirements. It should also be noted that requirements are based on total intake needs and do not allow for potential reuse of water within the system.

A summary of projected water requirements, developed by the University of Utah, is included on the following page for 19 counties in the potential ultimate phase area. The requirements are also shown graphically on page 121 to illustrate the relative magnitude of expected use by area.

The nonindustrial annual use rate per capita varies from about 0.17 acre-foot to about 0.50 acre-foot, depending on the county. In general the rural areas have a higher use rate because of increased irrigation use, stockwatering, and possibly the absence of water meters. The average nonindustrial use rate for the area is expected to increase from about 0.23 acre-foot per capita in 1960 to about 0.29 acre-foot per capita in the year 2020. The combined municipal and industrial use rate varies widely by county because of wide differences in industrial uses. The average annual combined use rate for the area is expected to increase from about 0.5 acre-foot per capita in 1960 to about 0.6 acre-foot per capita in the year 2020.

In addition to water requirements for the base population projection, Bureau of Reclamation economists have estimated water requirements for industrial growth not adequately covered under the base projection. The estimated additional water requirements are shown below by area and industry.

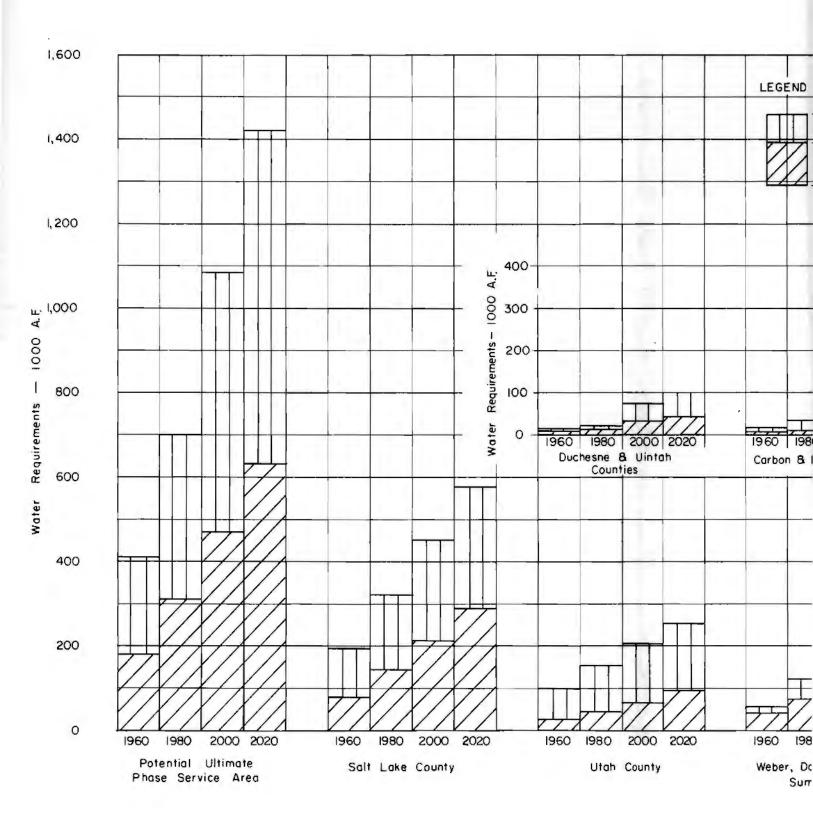
** * ************************	Uint	ah County	Kane County	Carbon- Emery Counties
4 1	011	······	Coal ,	Coal ,
Year	shale <u>l</u> /	Phosphate2/	<u>industry3/</u>	industry3/
1960		1,000		
1970	20,000	2,000	40,000	
1980	30,000	3,000	80,000	
1990	30,000	4,000	185,000	
2000	40,000	7,000	205,000	60,000
2010	40,000	11,000	205,000	105,000
2020	40,000	17,000	205,000	105,000
2030	50,000	26,000	205,000	205,000
2040	50,000	40,000	245,000	245,000
2050	60,000	62,000	245,000	310,000

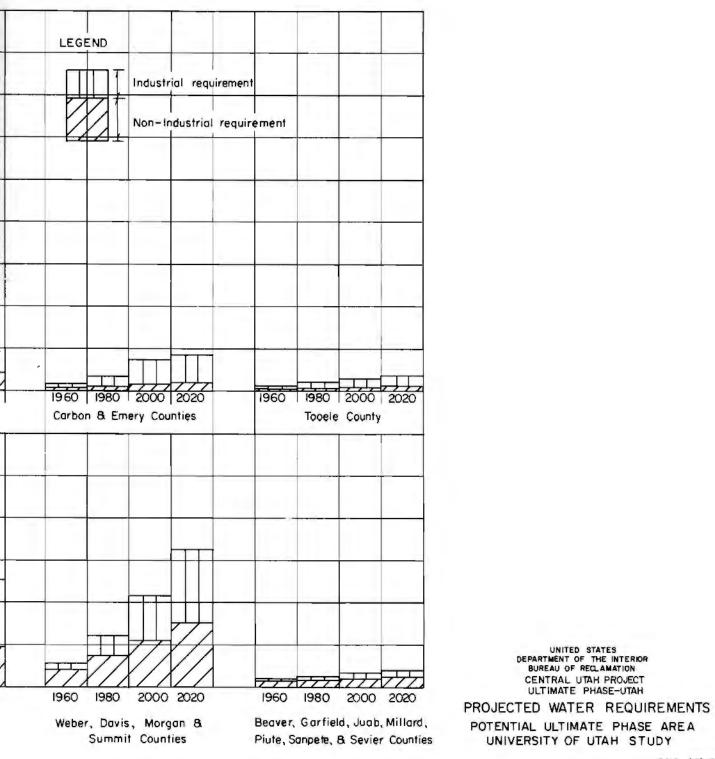
Additional water requirements for specific industrial development (Unit--acre-feet)

1/ Mater requirements computed at 0.75 acre-foot per capita per year for combined municipal and industrial use.

2/ Based on a total municipal and industrial water requirement of 3.5 acre-feet per 1,000 tons of marketable phosphate rock.

3/ Based on a water requirement of 1/4 acre-foot per capita per year and 20,000 acre-feet per mission kilowatts of installed capacity.


The water requirements should be reviewed periodically and revised as population changes occur or as water use rates change.


University of Utah study Water requirement data for 1960 and projections for 1960 Unit: Acre-feet

						Unit: Acre-le	.00
Access and and		1960			1980		
S	Total M&I	Industrial	and the second second second second		Industrial		Total M&I
County	water	water	water	water	water	water	water
Beaver	2,103	474	1,629	2,368	598	1,770	2,592
Carbon	12,656	7,498	5,158	24,305	16,635	7,670	54,770
Davis	18,103	6,948	11,155	48,727	25,477	23,250	88,713
Duchesne	2,146	281	1,865	2,624	386	2,238	3,109
Emery	4,400	3,242	1,158	8,482	6,639	1,843	17,110
Garfield	1,456	228	1,228	4,461	2,959	1,502	7,494
Juab	2,700	1,292	1,408	4,101	2,256	1,845	5,092
Millard	2,869	354	2,515	3,620	784	2,836	4,084
Morgan	1,256	159	1,097	1,876	382	1,494	2,468
Piute	424	18	406	458	52	406	546
Salt Lake	193,956	116,889	77,067	320,636	178,742	141,894	449,274
Sanpete	5,257	877	4,380	5,857	1,242	4,615	6,768
Sevier	5,215	857	4,358	6,735	1,426	5,309	8,435
Summit	3,195	476	2,719	5,330	868	4,462	6,670
Tooele	10,075	6,138	3,937	19,762	12,688	7,074	29,406
Uintah	9,684	3,672	6,012	16,653	8,346	8,307	69,321
Utah	98,074	71,430	26,644	153,688	109,741	43,947	205,751
Wasatch	3,438	1,687	1,751	5,064	2,759	2,305	5,780
Weber	32,986	7,297	25,689	66,059	21,041	45,018	119,025
Total	409,993	229,817	180,176	700,806	393,021	307,785	1,086,408

sity of Utah study) and projections for 1980, 2000, and 2020 it: Acre-feet

		2000			2020	
nindustrial water	Total M&I water	Industrial water	Nonindustrial water	Total M&I water	Industrial water	Nonindustrial water
1,770	2,592	657	1,935	2,824	697	2,127
7,670	54,770	41,259	13,511	60,760	45,285	15,475
23,250	88,713	51,998	36,715	141,761	88,802	52,959
2,238	3,109	486	2,623	3,525	554	2,971
1,843	17,110	14,307	2,803	23,563	19,639	3,924
1,502	7,494	5,358	2,136	10,072	7,458	2,614
1,845	5,092	2,867	2,225	5,906	3,343	2,563
2,836	4,084	1,024	3,060	4,291	1,074	3,217
1,494	2,468	594	1,874	3,041	804	2,237
406	546	84	462	615	116	499
141,894	449,274	236,976	212,298	575,105	286,550	288,555
4,615	6,768	1,730	5,038	7,455	2,124	5,331
5,309	8,435	1,985	6,450	10,252	2,533	7,719
4,462	6,670	1,123	5,547	7,902	1,342	6,560
7,074	29,406	19,956	9,450	37,518	25,989	11,529
8,307	69,321	41,043	28,278	93,814	56,093	37,721
43,947	205,751	138,740	67,011	252,744	159,418	93,326
2,305	5,780	2,789	2,991	6,406	2,748	3,658
45,018	119,025	51,997	67,028	171,884	83,067	88,817
307,785	1,086,408	614,973	471,435	1,419,438	787,636	631,802

289-418-27

Estimates of future water requirements are inherently uncertain. and time may prove them either too high or too low. The degree to which future needs can be met from sources other than Central Utah project is also uncertain. Increased requirements can be met to a limited extent by present supplies and local developments of surface and ground water. Some water now used for irrigation will likely become available for municipal and industrial use as residential and industrial developments spread into farmed areas. It is also expected water will be used more efficiently, and increased reuse will take place wherever practical. A cursory analysis to determine the extent increased requirements will depend on the ultimate phase was made considering the above factors. The analysis was made on a county or area basis and is summarized on the following page showing municipal and industrial water requirements, the present supply, the development from other sources, and the estimated amount required from the ultimate phase. The total anticipated ultimate phase municipal and industrial requirement is illustrated by the curve on page 124.

A brief description of the basis for the municipal and industrial estimates is presented in the following paragraphs for each county or area.

Salt Lake County

Salt Lake County is the most populous county in the State, and indications are that population and industrial growth will continue. The county presently uses about 47 percent of the total municipal and industrial water consumed in the 19-county ultimate phase area. Projections indicate the 1960 to 2020 increase in requirements for Salt Lake County to be about 380,000 acre-feet or about 37 percent of the total increase for the potential ultimate phase area.

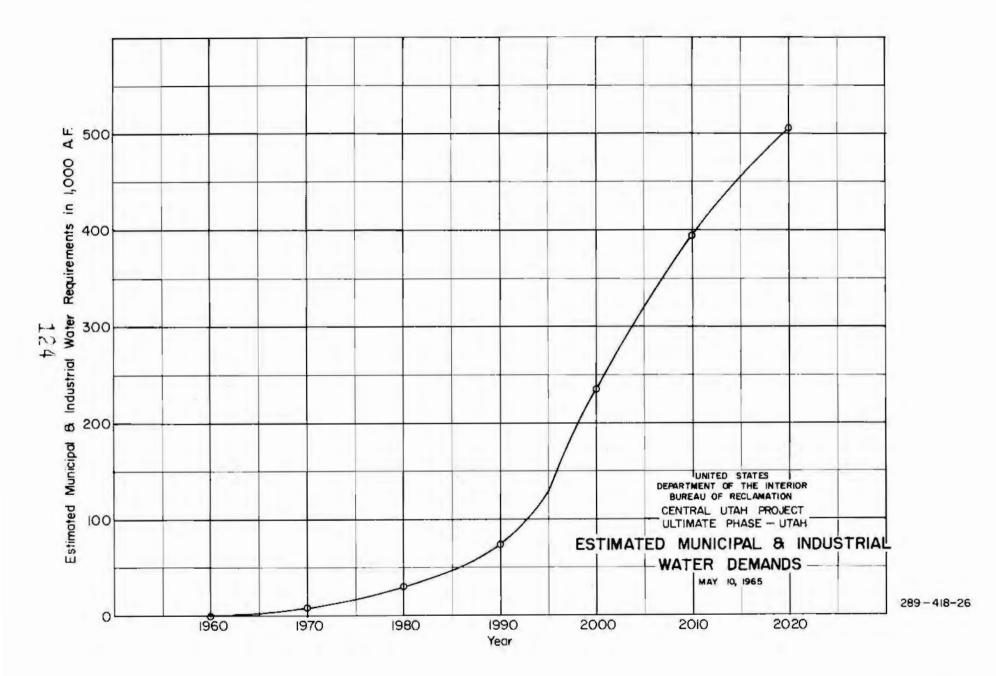
Water supply studies to determine the adequacy of present supplies and local developments in meeting future municipal and industrial water requirements have been made by Berger Associates, Inc., and the Bureau of Reclamation.

Studies by Berger Associates, Inc.

Studies made by a private engineering firm, Berger Associates, Inc., are included in reports of 1962 and 1964 to the Salt Lake City Metropolitan Water District. These reports include considerable data regarding water supply, water rights, present facilities, etc., and include recommendations for local development to extend present water supplies. Since the studies were made for the Metropolitan Water District, only the water supply available to public systems and the public supply requirements were considered. The requirements were computed at a rate of 0.24 acre-foot per capita per year which has been the current use

		Sur	mary sheet					
Municipal and	industrial	water	requirements	and	water	supply	analysis	

Unit: 1,000 AF


Year	Item	Salt Lake County	Utah County	Weber R. service area	Duchesne & Uintah Countyl	Carbon & Emery County <u>1</u> /	Sevier R. area & Juab Cty.	Tooele County	Wasatch County	Total
1960										
	er requirement	194	98	56	13	17	20	10	3	411
	er requirement	321	154	122	53	33	28	20	5	736
	ent supply2/	194	98	56	13	17	20	10	3	411
Loca	1 development3/	80	43	5	4	10	7	7	2	158
	r development4/	0	0	39	4	0	0	0	0	43
Incr	eased reuse	22	2	22	6	3	1	3	0	
Bonn	eville unit	25	11	0	0	0	0	0	0	59 36
Ulti	mate phase	0	0	0	26	3	0	0	0	29
2000										
	er requirement	449	206	217	120	132	35	29	6	1,194
Pres	ent supply2/	194	98	56	13	17	20	10	3	411
	1 development3/	120	43	5	8	10	8	8	3	205
Othe	r development4/	0	0	102	4	0	0	0	0	106
. Incr	eased reuse	32 64	12	54	18	23	l	5	0	145
Bonn	eville unit		25	0	0	0	2	0	0	91
	mate phase	39	28	0	77	82	4	6	0	236
2020										
	er requirement	576	253	325	155	189	41	38	6	1,583
Pres	ent supply2/	194	98	56	13	17	20	10	3	411
Loca	1 development3/,	135	47	5	8	10	8	10	3	226
	r development4/	0	0	106	4	0	0	0	0	110
	eased reuse	58	19	90	27	34	2	7	0	237
	eville unit	64	27	0	0	0	2	0	0	93
Ulti	mate phase	125	62	68	103	128	9	11	0	506

Requirements include industrial use anticipated over and above University of Utah projection.

It was assumed the 1960 requirements could be adequately served by present supplies.

1/2/2 Includes present local reserves and local increased supplies due to local development and irrigation conversion.

4/ Includes increased supplies developed by Bureau projects including Weber Basin project, Bear River project, and Jensen unit.

rate for the past several years. It is pointed out in the reports that should large industries be willing to pay the municipal rate for water, demands would increase accordingly and result in an increased depletion of existing supplies.

Three water supply studies were made by Berger Associates, Inc., to determine the maximum population which could be furnished a dependable water supply in the metropolitan service area (Salt Lake County population less 108,000 people presently supplied by wells and independent systems). The studies were based on coordinated use of all sources of water supply and indicate the increased yield associated with certain local development. The water supply for the studies included the portion of natural flow from mountain streams to which Salt Lake City has a right; estimated safe yield from wells owned or utilized by Salt Lake City, the Metropolitan Water District, and Salt Lake County Conservation District; existing rights of the Metropolitan Water District in the Provo River project and supplies made available by local regulation storage. Study No. 1 includes a 50,000-acre-foot reservoir on Dell Creek with variable reservation for flood control, a diversion conduit from Lambs Fork, and tunnels from Emigration and Mill Creeks. Study No. 2 includes a potential reservoir on Big Cottonwood Creek of 60,000-acre-foot capacity, a potential reservoir on Little Cottonwood Creek of 50,000-acre-foot capacity, increased use of mountain streams to which it is estimated Salt Lake City will acquire rights in the future, and the 50,000-acre-foot Little Dell Reservoir included in Study No. 1.

Study No. 3 uses the same data and facilities as Study No. 2 and 50,000 acre-feet of water annually from the Bonneville unit. Studies Nos. 1 and 2 cover the 1929-44 period, and Study No. 3 covers the 1921-63 period. Average annual yields from the various sources of water supply and the corresponding population supported are shown below.

			-acre-feet)
	Average annual	yield for pe	riod of study
	Study No. 1	Study No. 2	Study No. 3
	<u>l/(550,000</u>	Ľ/(720,000	<u>l</u> /(930,000
Sources of supply	population)	population)	population)
Mountain streams (direct)	71,400	68,200	80,900
Wells	13,600	16,900	17,200
Provo River project	44,300	58,100	54,500
Little Dell Reservoir	2,700	4,000	3,000
Big Cottonwood Reservoir	<i>,</i> .	14,300	9,500
little Cottonwood Reservoir		11,300	8,100
Central Utah project		,-	,
(Bonneville unit)			50,000
Total	132,000	172,800	223,200
Water supply unused or spilled	- /		-,
Mountain streams and reser-			
voirs	19,100	7,900	5,800
Deer Creek Reservoir	13,200	100	2,300
1/ Population supported bas	ed on 0.24 ac	ft. per capit	a per year.

MUNICIPAL AND INDUSTRIAL WATER

The period of critical water supply for the studies was the 1934-35 period which required considerable carryover storage to satisfy requirements. The tabulation below shows the contribution to water supply during the 1934-35 period as determined from the studies.

		(Unit	tacre-feet)
	Average and	ual yield duri	ing 1934-35
Source of supply	Study No. 1	Study No. 2	Study No. 3
Mountain streams	50,500	50,100	55,800
Wells	8,000	9,000	9,000
Provo River project	47,500	34,700	34,300
Little Dell Reservoir	26,000	27,000	23,100
Big Cottonwood Reservoir	F	26,600	27,800
Little Cottonwood Reservoir		25,400	23,200
Central Utah project			
(Bonneville unit)			50,000
Total	132,000	172,800	223,200

The studies indicate the storage on the Cottonwood Creeks would increase the annual water yield by about 40,000 acre-feet, and the Bonneville unit would increase it by an additional 50,000 acre-feet. From the University of Utah population projection and considering about 100,000 people outside of the service area, the adequacy of the water supplies in meeting public supply requirements is shown below based on an annual use of 0.24 acre-feet per capita.

Study	Average yield (acre-feet)	Service area population	County population	Adeq uate supply to year
Study No. 1	132,000	550,000	650,000	1981
No. 2 No. 3	172,800 223,200	720,000 932,000	820,000 1,030,000	1994 2009

Bureau of Reclamation Studies

Water supply studies made to date involving Salt Lake and northern Utah Counties have been principally focused on public supply sources. These sources include Wasatch Front creeks, underground water, Provo River project water available to the Metropolitan Water District of Salt Lake City, Provo River water now used for irrigation that could be converted to municipal and industrial use in the future, and Bonneville unit water. It has been estimated that approximately 100,000 people in Salt Lake County and 69,000 people in northern Utah County receive water from small independent and rural systems that are in addition to the supply considered in the Bureau studies. A water supply study was also made for Utah Lake to assess the future impact on the lake of full conversion of irrigation to municipal and industrial use.

An analysis of industrial water requirements not supplied by public systems was made, and potential sources of nonpublic supply were considered only in a cursory manner. These are included following the public supply studies.

<u>Public water supply studies.</u>--Two sets of water supply studies have been completed to investigate (1) the effects of varying storage at Little Dell Reservoir for supplying Salt Lake County and (2) the effects of varying Jordanelle Reservoir storage for both northern Utah and Salt Lake Counties. In the discussion of various studies to follow, Little Dell Reservoir studies are for conditions of the present and near future (up to 1980 approximately) and include studies for storage reservoirs on Big and Little Cottonwood Creeks in addition to Little Dell Reservoir, and Jordanelle Reservoir studies are for the more distant future (from 1980 to 2035 approximately) with Little Dell Reservoir capacity set at 25,000 acre-feet of active capacity and full conversion of irrigation water to municipal and industrial use assumed.

Little Dell Reservoir.--The following possibilities were investigated along with Little Dell Reservoir storage: (1) modifications of facilities or operating criteria to extend local supplies, (2) potential development of regulation storage on Big and Little Cottonwood Creeks for presently unused flows, (3) coordinated use of local facilities and potential development with Bonneville unit, and (4) the effect of local development on the need for an additional aqueduct from Provo River into Salt Lake County. The studies were made on a monthly basis and are based on water supply data for the 1929 to 1935 period. This period was selected because it includes the period of lowest recorded runoff. Maximum water conservation and use were attempted by utilizing unregulated flows before drawing on ground water supplies or regulated sources.

Basic data developed by Berger Associates, Inc., and included in an engineering report to the Metropolitan Water District of Salt Lake City have been utilized as listed below.

Average annual water	rights of Salt Lake	City
		Estimated
	Present	future
	rights	rights
Stream	(percent)	(percent)
City Creek	100	100
Emigration Creek	99	100
Parley's Creek	87	87
Mill Creek	60	80
Big Cottonwood Creek	75	85
Little Cottonwood Creek	50	70

	Water treatment f	acilities and capacities		
_		Design	Hydraulic	
		capacity	capacity	
Loc	Location (efs)			
City Creek	2	23	31	
Big Cottor	wood Creek	50	65	
Little Cot	ttonwood Creek	155	232	
Parley's (Creek	50	62	
	We	11 data		
	· · · ·		Installed	
			capacity	
	Owner		(cfs)	
Salt Lake	City		98	
Metropolit	tan District		11	
County Cor		_38		
Total		·····	147	
	Monthly distrib	ution of annual demand		
Month	Percent	Month	Percent	
Oct.	6.9	Apr.	6.4 9.6	
Nov.	4.9	9 May		
Dec.	4.9	June		
Jan.	4.9	July		
Feb.	4.2	Aug.	13.8	
Mar.			9.6	
		Total	100.0	

A summary of the water supply studies illustrating present conditions and potential local modifications and development is shown in the table on the following page. The summary gives a brief description of the water supply and facilities assumed for the particular plan. Also shown are the yield, water utilization, and the remaining unused supply.

The summary also shows the studies arranged into two plans with different sequences of development. Plan A starts with present conditions as illustrated by study 1 and considers in sequence the expanding of treatment facilities, the acquiring of additional water rights to the local streams, and the construction of Little Dell Reservoir, first to 25,000-acre-foot active capacity and then to 45,000 acre-feet. Plan B assumes Little Dell Reservoir would be constructed prior to expanding the treatment facilities or acquiring additional water rights. In this plan the capacity of the Salt Lake aqueduct is limited to 155 secondfeet until the capacity of the Little Cottonwood treatment plant is enlarged in the seventh step of the sequence (study No. 6). A discussion of the studies follows.

Study No. 1 is based on present conditions. The water supply was limited by present water rights and design capacities of existing treatment

			Summery of	
Chudre muchore			Present	conditi
Study munber	1	2	2	
Plan A sequence of development	1	2	3	4
Plan B sequence of development	1	2		
Facilities and water supply				
Mountain Dell Reservoir active capacity (AF)	3,000	3,000	3,000	3,00
Little Dell Reservoir active capacity (AF)				
Salt Lake aqueduct capacity (cfs)	155	155	175	17
Water rights	Present	Present	Present	Prese
Treatment facilities	Present	Present	Expanded	Expand
Yield of wells	<u>1</u> /	1/		
Yield (1000 AF)	96	108	112	11
Utilization of water supply, 1929-1935 average (1000 AF)				
Salt Lake County streams	52	53	53	6
Utilization of wells	11	13	13	1
Provo River project deliveries	33	42	45	L,
Mountain Dell Reservoir releases	0	0	ì	
Little Dell Reservoir releases	-	-	-	
Unused water supply, 1930-1935 average (1000 AF)				
Remaining Salt Lake County flow	24	23	23	1
Remaining Provo River project water	21	12	9	1

1/ In study No. 1 the supply available from wells was varied from 9000 acre-feet in the 1 other studies used 13,000 acre-feet from wells for all years.

2	3	4	5	6	7	8	9	10
2	3	4	5	6	7	8	9	
2				77	8	9	10	3
3,000	3,000	3,000	3,000	25,000	25,000	45,000	45,000	25,0
155 Present Present <u>1</u> /	175 Present Expanded	175 Present Expanded	175 Future Expanded	175 Present Expanded	175 Future Expanded	175 Present Expanded	175 Future Expanded	1 Pres Pres
108	112	118	123	127	134	135	142	1
53 13	53 13 45	61 13	69 13 40	61 13 48	69 13 47	62 13	70 13	
42 0 -	45 1 -	43 1 -	40 1 -	48 - 5	47	51 - 9	50 9	
23 12	23 9	11 11	15 14	96	13 7	7 3	11 4	

Summery of Salt Lake County water sumply studies

ied from 9000 acre-feet in the low water years of 1931, 1934, 1935 up to 18,000 acre-feet in the other

8	9	10	11	12	13
8	9				
	10	3	4	5	6
+5,000	45,000	25,000	25,000	45,000	45,000
175	175	155	155	155	155
Present	Future	Present	Future	Present	Future
manded	Expanded	Present	Present	Present	Present
135	142	118	125	126	135
62	7 0	48	57	56	61
13	13	13	13 48	13 51	13
51	50	51	48	<u>تر</u>	59
-	-	-	-	-	
9	9	6	7	8	ĴÓ
			-	_	
7	11	24	28	14	19
3	հ	3	6	2	5
000 acre	-feet in the	other year	s which it	could be us	ed. The

÷

÷

facilities. Ground water use was varied from 9,000 acre-feet per annum in 1931, 1934, and 1935 up to 18,000 acre-feet in the other years. The monthly use of ground water varied from 2,000 acre-feet in years of low yield to 4,000 acre-feet in the other years. The yield of study No. 1 as indicated is 96,000 acre-feet per year. The remaining unused supply is relatively large and indicates the treatment facilities limit the yield. Study No. 2 is similar to the first, except that ground water use was about 13,000 acre-feet each year with a maximum monthly use rate of 4,000 acre-feet. The resulting yield was 108,000 acre-feet with the increase primarily attributable to increased use of water available from the Provo River project. This is made possible by the increased demand using more of the Provo River project water, leaving less holdover water in Deer Creek Reservoir, and consequently less spill from the reservoir during high runoff years.

Study No. 3 illustrates a yield of 112,000 acre-feet assuming the Salt Lake aqueduct would convey 175 second-feet and the Little Cottonwood treatment facility would be expanded to a capacity of 195 second-feet including 20 second-feet from Little Cottonwood Creek in the summer months. Study No. 4 is based on the assumption treatment facilities would be adequate to permit full use of the supply available within the demand pattern. New treatment facilities would be required on Emigration and Mill Creeks, and existing facilities would require expansion. The yield associated with this study is 118,000 acre-feet per year.

Study No. 5 is based on acquiring additional water rights as well as adequate treatment facilities. It indicates a yield of 123,000 acre-feet or an increase of 5,000 acre-feet attributable to conversion of water from irrigation use.

Studies Nos. 5, 7, 8, and 9 were made to determine the overall yield expected by including storage at Little Dell Reservoir subsequent to the previously mentioned improvements. Studies Nos. 6 and 7 are based on 25,000-acre-foot active storage capacity considering present and future water rights, respectively; and studies Nos. 8 and 9 are for 45,000-acrefoot active capacity assuming present and future water rights, respectively. The increase in yield for the smaller Little Dell Reservoir is about 9,000 acre-feet based on present water rights and about 11,000 acre-feet considering future rights. The 45,000-acre-foot reservoir would yield 17,000 to 19,000 acre-feet per year based on present and future rights, respectively.

Studies Nos. 10, 11, 12, and 13 were made for the second sequence of development and show the yield considering present treatment facilities with the modified ground water use and storage at Little Dell Reservoir. Studies Nos. 10 and 11 relate to a 25,000-acre-foot Little Dell Reservoir and indicate yields of 118,000 and 125,000 acre-feet for present and future water rights, respectively. The other studies relate to a 45,000-acre-foot Little Dell Reservoir and indicate corresponding yields of 128,000 and

133,000 acre-feet, respectively. The yield attributable to constructing Little Dell Reservoir prior to other development would be about 10,000 and 20,000 acre-feet, respectively, for a 25,000 and 45,000 acre-foot reservoir based on present water rights. Future water rights and regulation storage together would increase the yields by 17,000 and 25,000 acre-feet for the respective reservoir sizes.

Additional increases in yield under the sequence of Plan B would result by adding additional treatment facilities. The increase in yield associated with added treatment facilities can be found by comparing studies Nos. 3, 4, 5, or 6 with the corresponding studies Nos. 6, 7, 8, or 9.

The table on the following page is a summary comparing potential regulation storage in Salt Lake County at Little Dell, Big Cottonwood, and Little Cottonwood Creeks. The water supply and operating criteria for each study are essentially the same, making the studies comparable. The water supply is based on future local water rights with no capacity limitations at treatment plants. Salt Lake aqueduct capacity was assumed at 175 second-feet, and no Bonneville unit water was included. Ground water use was assumed at 13,000 acre-feet each year. Following a drawdown of the reservoirs, refilling up to within 5,000 acre-feet of capacity was made for flood control purposes in preference to using the flows directly. This criterion indicated that in most years 5,000 acrefeet is sufficient space to control surplus direct streamflow. In high runoff years, however, spilling occurred which could have been reduced by reserving more space for the spring runoff.

Capacity at Little Dell Reservoir was assumed in each study because of lower relative costs and the urgent need for flood control on that stream. It was also assumed storage at Big Cottonwood Creek would precede Little Cottonwood Creek regulation based on rough comparative cost estimates.

Increased yield attributable to various combinations of reservoir capacities can be obtained by comparing differences of yields from the table. The tabulated data do not include all possible combinations of storage but should suffice in giving direction for preliminary studies.

The table on page 133 includes results of certain studies from the previous table and parallel studies showing the use of 50,000 acre-feet of Bonneville unit water coordinated with local supplies and potential local development.

Studies No. 1-A, 2-A, and 3-A include the same facilities in Salt Lake County, but 2-A and 3-A reflect the use of Bonneville unit water. Study 2-A was based on delivery of 50,000 acre-feet of Bonneville unit water each year and as noted resulted in an average unused supply of

131

	Summary of : Local regulation	Salt Lake Cou storage comp		
Study number	1	2	3	
Facilities and water supply				
Little Dell Reservoir (active capacity - AF)	25,000	45,000	25,000	25,
Big Cottonwood Creek Reservoir (active capac- ity - AF)			25,000	50,
Little Cottonwood Creek Reservoir (active capacity - AF)				
Salt Lake aqueduct capacity	175	175	175	
Water rights	Future	Future	Future	Fut
Treatment facilities	Expanded	Expanded	Expanded	Expa
Yield (1000 AF)	134	142	145	
Utilization of water supply, 1929-1935 average (1000 AF)				
Salt Lake County streams	70	70	69	
Utilization of wells	13	13	13	
Provo River project deliveries	47	50	52	
Little Dell Reservoir releases	5	9	4	
Big Cottonwood Creek Reservoir releases	-	-	7	
Little Cottonwood Creek Reservoir releases	-	-	-	
Unused water supply, 1930-1935 average (1000 AF)				
Remaining Salt Lake County flow	13	11	8	
Remaining Provo River project water	7	4	2	

2	3	<u> </u>	5	6		8
5,000	25,000	25,000	45,000	45,000	25,000	25,000
	25,000	50,000	25,000	50,000	25,000	50,000
					25,000	50,000
175	175	175	175	175	175	175
uture	Future	Future	Future	Future	Future	Future
pended	Expanded	Expanded	Expanded	Expanded	Expanded	Expanded
142	145	152	151	159	150	163
70	69	68	68	68	68	59
13	13	13	13	13	13	13
50	52	53	53		53	59 13 53 4 17 16
50 9	4	5	7	53 8	53 4	4
-	7	13	10	17	6	17
-	-	-	-	-	6 6	16
	8	7	8	7	•	· .
11 4	2	7	0	7 0	0	1

	Summary of Salt Lake County water supply studies Local regulation storage with Bonneville unit								
Study musber	1-A	2-A	3-A	4-A	5-A				
Facilities and water supply									
Little Dell Reservoir active capacity (AF)	25,000	25,000	25,000	45,000	45,000	49			
Big Cottonwood Creek Reservoir active capacity (AF)						25			
Little Cottonwood Creek Reservoir active capacity (AF)									
Water rights	Future	Future	Future	Future	Future	Fu			
Treatment facilities	Expanded	Expanded	Expanded	Expanded	Expanded	Exp			
Salt Lake equeduct capacity (cfs)	175	175	175	175	175				
Yield (1000 AF)	134	· 19 1	200	142	201				
Utilization of supply, 1929-1935 sverage (1000 AF)									
Salt Lake County streams	70	79	80	70	80				
Utilization of wells	13	13	13	13	13				
Provo River project deliveries	47	44	13 54 48	50	13 53 47 8				
Bonneville unit deliveries	-	50	48	-	47				
Little Dell Reservoir releases	5	5	5	9	8				
Big Cottonwood Creek Reservoir releases	÷.	-		-	-				
Little Cottonwood Creek Reservoir releases	-	-	-	-	-				
Unused supply, 1930-1935 average (1000 AF)									
Remaining Salt Lake County flow	13	5	3	11	4				
Remaining Provo River project water	7	9	õ	ե	0				
Required carryover in Jordanelle Reservoir (AF)	-	0	20,000	-	-				

studie: e unit	6					
5-A	6 - A	7-A	8-A	9-A	10-A	11-A
,000	45,000 25,000	45,000 25,000	25,000 25,000	25,000 25,000	25,000 25,000 25,000	25,000 25,000 25,000
ture anded 1 7 5	Future Expanded 175	Future Expanded 175	Future Expanded 175	Future Expanded 175	Future Expanded 175	Future Expanded 175
201	151	204	145	202	150	206
80 13 53 47 8 -	68 13 53 7 10	73 13 53 48 9 8	69 13 52 - 4 7 -	77 13 53 49 4 6	68 13 53 4 6 6	78 13 53 49 4 5 4
4 0	8 1	2 0	8	3 0	7 0	1
-	-	o	-	0		0
			· _ · · · · · · · · · · · · · · · · · ·			

MUNICIPAL AND INDUSTRIAL WATER

14,000 acre-feet. Study 3-A was based on delivering the Bonneville unit water on a variable annual rate which would require additional regulation in Jordanelle Reservoir of about 20,000 acre-feet. The increase in yield over study No. 2-A is about 8,000 acre-feet per year. All other studies, Nos. 4-A and 5-A, 6-A and 7-A, etc., illustrate conditions without and with Bonneville unit for specific facilities. In these studies the Bonneville unit water deliveries were made on a variable basis; however, with the assumed storage in Salt Lake County little if any added carryover space would be needed in Jordanelle Reservoir.

A comparison of the two previous tables indicates only small increases in yields can be obtained by constructing local storage subsequent to Bonneville unit deliveries. The apparent reason is that as the demand increases more direct flow is usable under the demand curve. Increases in yields above that provided by a 25,000-acre-foot Little Dell Reservoir used in connection with Bonneville unit water are largely accounted for by the increase in carryover into the study period. It appears the benefits of local storage in Salt Lake County for storage above 25,000 to 50,000 acre-feet are relatively minor from a water supply standpoint. There may be value however in constructing joint storage for peaking purposes, emergency supplies, flood control, and recreation. Additional study would be required to investigate the possibilities of such joint use.

The table on the following page summarizes a series of studies made to determine the limiting water yield assuming the Salt Lake aqueduct as the only conveyance facility for delivering Provo River project water and Bonneville unit water into Salt Lake County.

Study No. 1 is based on present water rights and is the same as study No. 4 in the table on page 129. In this particular study the addition of Bonneville unit water would not add to the yield because the Salt Lake aqueduct was at the 175-second-foot capacity during 3 months of 1934, and in these same months local streamflow and Mountain Dell Reservoir were used to the full extent. Additional local water rights, additional local storage, or an additional aqueduct into Salt Lake County are required to increase the yield.

Study No. 2 is based on future water rights and is identical to study No. 5, in the table on page 129. As in study No. 1, Bonneville unit water would not increase the yield unless local storage or an additional aqueduct into Salt Lake County were constructed.

Study No. 3 was based on the same local supply as study No. 2 but included the addition of 25,000 acre-feet of storage at Little Dell Reservoir. The limiting overall annual yield assuming the capacity of Salt Lake aqueduct at 175 second-feet is 161,000 acre-feet per year including an average of 14,000 acre-feet of usable Bonneville unit water.

Study number	1	2	3	4	5	
Facilities and water supply						
Mountain Dell Reservoir active capacity (AF)	3,000	3,000	0	0	0	
Little Dell Reservoir active capacity (AF)	0	0	25,000	25,000	45,000	2
Big Cottonwood Creek Reservoir active capacity (AF)	. 0	0	0	0	0	2
Little Cottonwood Creek Reservoir active capacity (AF)	0	0	* 0	0	0	2
Salt Lake aqueduct capacity (cfs)	175	175	175	200	175	
Water rights	Present	Future	Future	Future	Future	F
Treatment facilities	Expanded	Expanded	Expanded	Expanded	Expanded	Ex
Yield (1000 AF)	118	123	161	175	182	
Utilization of water supply, 1929-1935 average (1000 AF)						
Salt Lake County streams	61	69	73	74	73	
Utilization of wells	13	13	13	13		
Provo River project deliveries	43	40	54	1 3 54 26	13 54	
Bonneville unit deliveries	0	0 .	14	26	28	
Mountain Dell Reservoir releases	1	1	0	0	0	
Little Dell Reservoir releases	0	0	7	8	14	
Big Cottonwood Creek Reservoir releases	0	0	-	H	-	
Little Cottonwood Creek Reservoir releases	0	0	-		-	
Unused water supply, 1930-1935 average (1000 AF)						
Remaining Salt Lake County flow	14	19	10	7	6	
Remaining Provo River project water	10	12	0	ò	ō	
Required carryover in Jordanelle Reservoir (AF)			35,000	33,000	30,000	2

e8			
3	4	5	6
0	0	0	0
25,000	25,000	45,000	25,000
. 0	0	0	25,000
• o	0	0	25,000
175	200	175	175
Future	Future	Future	Future
Expanded	Expanded	Expanded	Expanded
161	175	182	204
73 13 54 14 0 7	74 13 54 26 0 8 -	73 13 54 28 0 14 -	56 13 54 50 0 3 14 14
10 0	7 0	6 0	0
35,000	33,000	30,000	25,000

Study No. 4 is similar to the previous study except the Salt Lake aqueduct capacity assumed is 200 second-feet. The resulting annual yield is 175,000 acre-feet, including 26,000 acre-feet of usable Bonneville unit water.

In studies Nos. 5 and 6 consideration was given to additional storage in Salt Lake County, and these studies illustrate that about 75,000 acrefeet of peaking storage capacity in Salt Lake County would eliminate the need for a second aqueduct to deliver the Bonneville unit supply. Added carryover space in Jordanelle Reservoir of about 25,000 acre-feet would be required to permit flexibility of use.

Jordanelle Reservoir.--The capacity of Jordanelle Reservoir was varied in the following studies to determine the breakpoints in the ratio of storage capacity to firm municipal and industrial yield for 3-to 14year holdover storage periods. Provo Reservoir Canal was considered as the most economical supplement to the Salt Lake aqueduct as a conveyance facility, and its entire capacity of 350 second-feet near Jordan Narrows or an enlargement was used in each study. The studies were made on a monthly basis and cover the period from 1929 to 1942. This period was selected because it includes the period of lowest recorded runoff. Maximum water conservation and use were attempted by utilizing unregulated flows before drawing on ground water supplies or regulated sources. All flows of the Wasatch Front creeks and Provo River and its imports from the Weber and Duchesne Rivers were considered available for satisfying losses and demands.

A summary of the water supply studies illustrating conditions with the active capacity used in the August 1964 definite plan report (150,000 acre-feet) and projections up to full use of all available water is shown in the tabulation on the following page. The summary shows the facilities assumed and their size for each particular plan. Also shown are the yield, water utilization, and incremental storage and yield.

The following assumptions were made in all six studies shown in the summary table. Treatment plants were assumed built to sufficient capacity to adequately treat all the supply. Conveyance facilities were assumed to be available to transport the water from Little Dell Reservoir and from Jordan Narrows to points of use in Salt Lake County. Northern Utah County would be served by a separate aqueduct diverting from Provo River. Little Dell Reservoir would store flows of Little Dell Creek and of Lambs Creek by means of the Lambs Creek diversion conduit. Ground water and local surface supplies were estimated at 22,000 acre-feet annually in northern Utah County and 42,000 acre-feet annually in Salt Lake County. Capacity of the Salt Lake aqueduct was assumed as 175 secondfeet. Deer Creek Reservoir with 150,000 acre-feet of active storage would be available for storage of project water.

Study number Facilities and water supply	1	2	6			
		<u> </u>	3	4	5	6
Little Dell Reservoir active						
capacity (acft.)	25,00 0	25,000	25,000	25,000	000, 25	25,000
Jordanelle Reservoir active						
capacity (acit.)	150 , 000	210,000	000ر 335	445,000	530,000	000, 625
Salt Lake aqueduct capacity						
(c.f.s.)	175	175	175	175	175	175
Provo Reservoir Canal capacity						
(c.f.s.)	350	450	500	525	525	525
Yield of wells and local surface						
supplies						
In Salt Lake County	42,000	42,000	42,000	42,000	42,000	42,000
In northern Utah County	22,000	22,000	22,000	22,000	22,000	22,000
Yield (1,000 acft.)		_				
Salt Lake County	371	389	405	416	424	430
Northern Utah County	86	91	95	99	100	102
Utilization of water supply						
(1,000 acft.)			_	_		
Period of study	1929 - 36	193 1- 36	1930 - 36	1930-36	1930-42	1929 - 42
Salt Lake County streams	112	106	108	106	116	120
Wells and local surface supplies			_			
In Salt Lake County	42	42	42	42	42	42
In Northern Utah County	22	22	22	22	22	22
Provo River plus imports	281	310	328	345	344	348
Incremental storage capacity						
required in Jordanelle						
Reservoir (1,000 acft.)		60	125	110	85	95
Incremental municipal and indus-						_
trial yield (1,000 acft.)		23	20	15	9	8
Incremental storage capacity to						
firm municipal and industrial						
yield ratio		2.6:1	6.2:1	7.3:1	9.4:1	11 .9:1

MUNICIPAL AND INDUSTRIAL WATER

CHAPTER VI

Study No. 1 is based on Jordanelle Reservoir capacity of 150,000 acre-feet. The carryover period for this study was from June 1933 to January 1936. Provo Reservoir Canal capacity of 350 second-feet was assumed.

Study No. 2 is based on Jordanelle Reservoir capacity of 210,000 acre-feet. The carryover period for this study was from June 1933 to January 1936. Provo Reservoir Canal capacity of 450 second-feet was assumed. By increasing the storage in Jordanelle Reservoir 60,000 acrefeet, an additional yield over study No. 1 of 23,000 acre-feet could be realized or an incremental storage capacity to firm municipal and industrial yield ratio of 2.6 to 1.

Study No. 3 is based on Jordanelle Reservoir capacity of 335,000 acre-feet. The carryover period for this study was from June 1930 to October 1935. Provo Reservoir Canal capacity of 500 second-feet was assumed. By increasing the storage in Jordanelle Reservoir 125,000 acrefeet, an additional yield over study No. 2 of 20,000 acre-feet could be realized or an incremental storage capacity to firm municipal and industrial yield ratio of 6.2 to 1.

Study No. 4 is based on Jordanelle Reservoir capacity of 445,000 acre-feet. The carryover period for this study was from June 1929 to January 1936. Provo Reservoir Canal capacity of 525 second-feet was assumed. By increasing the storage in Jordanelle Reservoir 110,000 acrefeet, an additional yield over study No. 3 of 15,000 acre-feet could be realized or an incremental storage capacity to firm municipal and industrial yield ratio of 7.3 to 1.

Study No. 5 is based on Jordanelle Reservoir capacity of 530,000 acre-feet. The carryover period for this study was from June 1929 to January 1941. Provo Reservoir Canal capacity of 525 second-feet was assumed. By increasing the storage in Jordanelle Reservoir 85,000 acrefeet, an additional yield over study No. 4 of 9,000 acre-feet could be realized or an incremental storage capacity to firm municipal and industrial yield ratio of 9.4 to 1.

Study No. 6 is based on Jordanelle Reservoir capacity of 625,000 acre-feet. This capacity represents about the maximum size of reservoir to fullycontrol the river and its imports. The carryover period for this study was from June 1929 to January 1941. Provo Reservoir Canal capacity of 525 second-feet was assumed. An increase in storage capacity of 95,000 acre-feet would yield an additional 8,000 acre-feet over study No. 5. The incremental storage capacity to firm municipal and industrial yield ratio between study No. 5 and study No. 6 would be 11.9 to 1.

Utah Lake.--The operation study of Utah Lake with Provo and Goshen Bays diked under conditions of full use of Provo River and its imports

138

for municipal and industrial use with Bonneville unit assumed in operation indicated that a firm annual yield of 205,000 acre-feet could be maintained. The effects of transforming the presently irrigated land adjacent to the lake in northern Utah County into homes, lawns, streets, business buildings, churches, parks, and industrial complexes in the way of increased runoff and return flows were assessed.

Industrial water supply studies.--Industrial water requirements in Salt Lake County are expected to increase from about 117,000 acre-feet per year in 1960 to about 287,000 acre-feet by 2020 or an increase of about 245 percent. The annual increase, if distributed uniformly over the 60-year pwriod, would be about 2,800 acre-feet per year.

Most of the water presently used for industrial purposes in Salt Lake County is developed independently. Sources of supply include streams emerging from the Wasatch Mountains, Jordan River, Utah Lake, and underground water developed by wells. Increased use in the near future will depend chiefly on water reserves, development of surplus flows and return flows to Jordan River, irrigation conversion, development of additional ground water, and the purchase of municipal water. The additional water for industrial use which can be developed from these sources has not been determined.

An investigation of water resources of Salt Lake County is presently underway as a joint effort of industrial users, municipalities and local districts, and State and Federal agencies; however, the investigation will not be completed for at least 3 years. When completed, the study will provide more reliable data with respect to the availability of surface and ground water which can be developed for municipal and industrial use in the area. Estimates of future water supply for industrial use have been made under population and water requirements subheading but should be used only as rough estimates and should be updated as additional data become available.

Surplus flow of the Jordan River was estimated by comparing recorded flows with estimated water requirements. The water requirements of the lower Jordan River were estimated by Karl Harris, Irrigation Engineer, Agricultural Research Service, Phoenix, Arizona. The requirements are included in Information Bulletin No. 13 published by the Utah State Engineer's Office and have been summarized on the following page.

139

	Estin	ated water	requirement	ts for	
	lower	Jordan area	, Salt Lak	e County	
		Requiremen	t (cfs)		Total
	Agri-	Game	Induş-		(1,000
<u>Month</u>	culture	refuges	try1/	Total	acft.)
January			8	8	0.5
February			8	8	•5
March		370	8	378	23.4
April	27	370	8	405	24.3
May	27	200	8	235	14.6
June	27	200	8	235	14.1
July	27	200	8	235	14.6
August	20	150	8	178	11.0
September	20	86	8	114	6.8
October		31	8	39	2.4
November		-	8	-8	•5
December			8	8	5
Total					113.2
1/ Tr	ludes only	the consume	tino roani	moment of	Ittoh Dovor

-----. . .

1/ Includes only the consumptive requirement of Utah Power & Light Company plants.

The water requirements have been compared with the flows of the Jordan River and Surplus Canal at 2100 South and the estimated inflow of Salt Lake City sewers. Comparisons are included below for average streamflow over the 1943 to 1962 period and for 1961 which is a low year approaching 1934 and 1935

(Unit--1,000 acre-feet)

	Jordan River	Salt			
	and Surplus	Lake	Lower		
	Canal	City	Jordan River	Surplus	Short-
Month	1942-63 average	sewers	demands	flow	ages
October	19.0	2,8	2.4	19.4	
November	16.7	2.7	•5	18.9	
December	17.5	2,8	•5	19.8	
January	17.2	2.8	•5	19.5	
February	16.9	2.5	•5	18.9	
March	20.1	2.8	23.4		۰5
April	20.4	2.7	24.3		1.2
May	25,5	2.8	14 . 5	13,7	
June	27.1	2.7	14.1	15.7	
July	18.2	2.8	14.6	6.4	
August	17.5	2.8	11.0	9.3	
September	18.9	2.7	6.8	14.8	
Total	235.0	32.9	113.2	156.4	1.7

			(0.1		C1C-1CCV)
	Jordan River	Salt			
	and Surplus	Lake	Lower		
	Canal	City	Jordan River	Surplus	Short-
Month	1961	Bewers	demands	flow	ages
October	15.1	2.8	2.3	15.5	
November	13.6	2.7	•5	15.8	
December	13.4	2,8	•5	15.7	
January	12.0	2.8	•5	14.3	
February	11.2	2.5	• 5	13.2	
March	12.4	2.8	23.4		8.2
April	10.3	2.7	24.3		11.3
May	10.7	2.8	14.6		1.1
June	8.2	2.7	14.1		3.2
July	8.5	2.8	14.6		3.3
August	7.9	2.8	11.0		•3
September	8.7	2.7	6.8	4.6	
Total	132.0	32.9	113.2	79.1	27.4

(Unit--1,000 acre-feet)

The comparisons indicate about 80,000 acre-feet of surplus water on the lower Jordan River during a relatively low runoff year and about 156,000 acre-feet in an average year. There are, at the same time, substantial shortages noted in 1961 and minor shortages in an average year indicating seasonal and carryover regulation storage is required to increase the dependable yield. It is recommended regulation storage on the Jordan River be considered under ultimate phase to develop water for industrial use. Such storage could be used for flood control, recreation, and water quality control in addition to regulation.

Population and water requirements.--Population and water requirements for 1960 and projections for 1980, 2000, and 2020 were included in the University of Utah study and are tabulated below.

Salt	Lake	County	popu	ulation	and	water	reç	uirement	data
	Uni	lversit	y of	Utah s	tudy	(figu	res	rounded)	

University of Utah a	study (fig	ures roun	ded)	
	1960	1980	2000	2020
Population	383,000	633,000	893,000	1,158,000
Nonindustrial water	-	·	-	-
requirement (1,000 acft.)	77	142	212	288
Industrial water				
requirement (1,000 acft.)	117	179	237	287
Total municipal and industrial				
water requirement (1,000 acft.)	194	321	449	575

The study indicated 86,000 acre-feet of water delivered by public and rural domestic systems in 1960 indicating about 9,000 acre-feet of industrial water was delivered by public systems. Annual use per capita for nonindustrial requirements ranges from about 0.20 acre-foot in 1960

to 0.25-acre-foot in 2020. Public supply deliveries in 1960 were at an annual rate of about 0.225-acre-foot per capita. On the basis of the increasing nonindustrial requirements it appears annual public supply requirements will approach 0.28-acre-foot per capita by the year 2020.

The tabulation below shows the estimated public supply requirements and illustrates how such requirements may be supplied by presently available supplies, increased supplies made usable by local development, and Bonneville unit water. A remaining demand which may rely on ultimate phase development is also shown. It should be realized the local development assumed is for illustrative purposes only and should not be construed to represent or define local development. In addition all data, including requirements and potential supplies, should be reviewed periodically and adjusted as deemed appropriate.

> Estimated public water requirements and potential water supplies Salt Lake County (Unit--1.000 acre-feet)

(Unit1,000 acre-feet)							
			Year				
1960	1970	1980	1990	2000	2010	2020	
77	109	142	176	212	250	289	
9	13	17	20	25	29	34	
	-				-		
86	122	159	196	237	279	323	
96	96	96	96	96	96	ି ୨ଟି	
-			-		-		
	2 6	38	38	38	38	38	
			62	64	Ğ4	64	
		-		39	81	125	
	<u>1960</u> 77 9 86	$ \begin{array}{r} 1960 & 1970 \\ 77 & 109 \\ 9 & 13 \\ 86 & 122 \\ 96 & 96 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

1/ Assumes expansion of treatment facilities, conversion of water rights, and 25,000-acre-foot active capacity at Little Dell.

2/ Includes 50,000 acre-feet assumed available from Jordanelle and 14,000 acre-feet of presently available water made usable by importing Bonneville unit water.

Another tabulation is included on the following page to indicate projected industrial requirements. Remaining demands on the bottom line of the tabulation could likely be satisfied from increased municipal and industrial return flow and regulation storage on the Jordan River. An analysis of the future industrial supply has not been made at this time but should be made for inclusion into the 1966 supplemental definite plan report.

TRATER OF THE REAL TOUR TOUR TOUR									
Salt Lake County									
(Unit1,000 acre-feet)									
Year									
	1960	1970	1980	1990	2000	2010	2020		
Industrial requirement	117	148	179	208	237	263	287		
Supplied from public systems	9	13	17	20	25	29	34		
Remaining industrial require-									
ment	108	135	162	188	212	234	253		
Estimated present supply	120	120	120	120	120	120	120		
Remaining demand		15	42	68	92	114	1 <u>33</u>		

Estimated industrial water requirements

Utah County

Requirements for municipal and industrial water within Utah County have been rapidly increasing during the past two decades as a result of accelerating population growth, industrial expansion, and commercial development. Municipal and industrial water utilization for the county in 1960 was exceeded only by Salt Lake County and amounted to about 24 percent of the total use in the potential ultimate phase service area. Water requirement projections indicate Utah County's use will increase from 98,000 acre-feet in 1960 to about 253,000 acre-feet in 2020. In the year 2020 Utah County will use about 18 percent of the total municipal and industrial water consumption in the service area.

Water resources of Utah County consist of local streamflow, springs, ground water, and water delivered by the existing Strawberry Valley and Provo River projects. The water resources are currently nearing full utilization. Increased water use appears to depend on water reserves, conversion from irrigation use, and water imported under the Central Utah project.

Population and water requirements for 1960 and projections for 1980, 2000, and 2020 were included in the University of Utah study and are tabulated below.

University of Otan Stady (113dres Tounded)							
	Year						
	1960	1980	2000	2020			
Population	107,000	1.52,000	237,000	318,000			
Nonindustrial water							
requirement (1,000 acft.)	26.6	43.9	67.0	93.3			
Industrial water							
requirement (1,000 acft.)	71.4	109.7	138.7	159.4			
Total municipal and industrial			-				
water requirement (1,000 acft.)		153.6	205.7	252.7			

Utah County population and water requirement data University of Itab study (Figures rounded)

The study showed about 34,000 acre-feet of water delivered by public and rural domestic systems in 1960, indicating about 7,000 acre-feet of industrial water was delivered by public systems. Annual use per capita for nonindustrial requirements ranges from 0.25-acre-foot in 1960 to 0.29-acre-foot in 2020. Public supply deliveries in 1960 were at an annual rate of about 0.32 acre-foot per capita. On the basis of nonindustrial requirements, it appears public supply requirements would approach 0.37-acre-foot per capita per year by 2020. It is assumed, however, that more efficient use of water will take place and building lots will be smaller, thus offsetting increase in public requirements.

Utah County was considered in two parts in the Bonneville Unit Definite Plan Report. The area encompassing Provo and the municipalities to the north was considered North Utah County and the area south of Provo as South Utah County. The population and public supplied water requirements have been estimated for the two areas and are listed below.

Population and water	requireme	ent for Uta	h County	
	1960	1980	2000	2020
South Utah County	27,000	37,000	52,000	68,000
Population				
Annual public water				
requirement (acft./capita)	• 32	.32	• 32	+32
Annual public water		_		0
requirement (1,000 acft.)	8.70	11.80	16,60	21.80
North Utah County				
Population	80,000	125,000	185,000	250,000
Annual public water				
requirement (acft./capita)	• 32	• 32	• 32	• 32
Annual public water				_
requirement (1,000 acft.)	25.60	40.00	59.20	80,00

It is estimated water reserves and local development will adequately serve the area until about 1975. Increased requirements beyond 1975 would depend primarily on water imported under Bonneville unit and ultimate phase of Central Utah project. The tabulation below derives potential demands on Central Utah project.

		. (I	Jnit	-1,000	acre	-feet)
			Ye	ear		
	1975	1980	1990	2000	2010	2020
South Utah County						
Public supply requirement	11	12	14	17	19	22
Present supply and local conversion	11	11	11	12	12	12
Central Utah demand		. 1	3	5	7	10
North Utah County						
Public supply requirement	36	40	49	59	70	80
Present supply and local conversion Central Utah demand	3 6	36 4	37 12	37 22	38 32	39 41

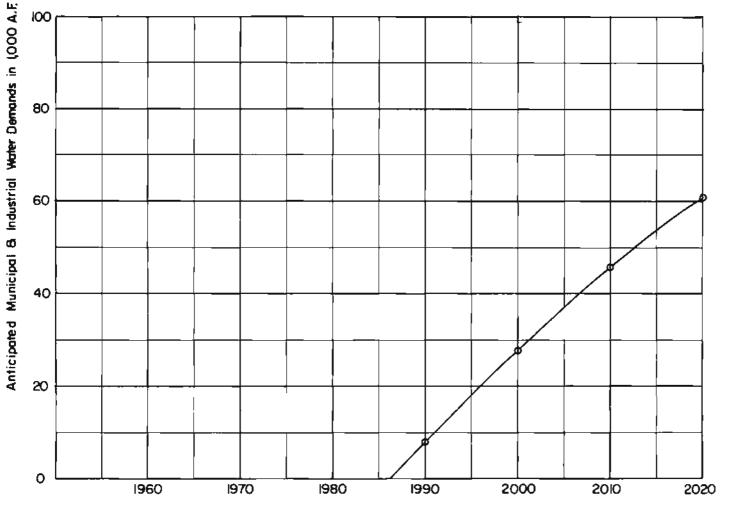
MUNICIPAL AND INDUSTRIAL WATER

CHAPTER VI

The industrial requirements which may require project water have been derived below. It is expected the requirements will be located primarily in North Utah County.

	(Unit1,000 acre-feet) (Figures rounded)					
· · · · · · · · · · · · · · · · · · ·			3	lear		
	1975	1980	1990	2000	2010	2020
Industrial water requirements	102	110	126	140	152	160
Independent industrial water						
requirements	94	102	118	132	144	152
Present supply and conversion	94	94	94	94	94	94
Remaining requirements	-	8	24	38	50	58
Estimated reuse		2	8	12	16	19
Central Utah demand		6	16	26	34	

The demands for project water are rough estimates and will be revised as additional data are available or new trends develop. It was assumed the Bonneville unit water would be available in 1975 and would be initially needed the same year. Distribution of Bonneville unit water was assumed as contemplated in the definite plan report, 20,000 acre-feet to North Utah County and 7,500 acre-feet to South Utah County.


> Central Utah project water requirements Utah County (Unit--1.000 acre-feet)

±,000	CCTC-TC				
1975	1980	1990	2000	2010	2020
	l	3	5	7	10
	l	- Š	5	7	8
					2
	4	12	22	32	41
	6	16	26	34	<u> </u>
	10	28	48	66	80
	10	20	20	20	20
		8	28	45	60
		1975 1980 1 1 4 <u>6</u> 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Depending on trends and the location of industry, it appears Bonneville unit water is adequate for South Utah County to about 2010. It appears North Utah County could require ultimate phase water prior to 1990. The total anticipated municipal and industrial requirement from the ultimate phase is illustrated by the curve on the following page for Utah County.

Davis, Weber, Morgan, and Summit Counties

Davis, Weber, Morgan, and Summit Counties have been considered jointly because they are all within the Weber River service area. The

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION CENTRAL UTAH PROJECT ULTIMATE PHASE-UTAH MUNICIPAL & INDUSTRIAL WATER DEMANDS UTAH COUNTY

MAY 10, 1965

146

MUNICIPAL AND INDUSTRIAL WATER

four counties combined account for about 14 percent of the 1960 total municipal and industrial water consumption in the potential ultimate phase area. The anticipated use by 2020 is expected to approach 23 percent of the total for the entire service area, indicating above average growth is expected in the four-county area.

Expanding municipal and industrial water requirements are currently being met with ground water development and Weber Basin project supplies. It is anticipated the ground water will be fully developed in the near future and that increasing requirements will depend primarily on Weber Basin project supplies and irrigation conversion.

The Weber Basin project will provide about 60,000 acre-feet of municipal and industrial water for use in the area. The potential Bear River project currently being studied includes provisions to make about 22,000 acre-feet of water available to the area by 1975, and ultimately it is estimated about 68,000 acre-feet of Bear River project water could be delivered through various exchange agreements.

Population and water requirement data for 1960 and projections for 1980, 2000, and 2020 developed by the University of Utah are shown below for the four counties combined.

(Ilgures rounded)								
	1960	1980	2000	2020				
Population	184,000	306,000	441,000	.1973,000				
Water requirements (1,000 acft.)								
Nonindustrial	41	74	111	151				
Industrial	15	48	106	174				
Total	56	122	217	325				

Projected population and water requirement data (figures rounded)

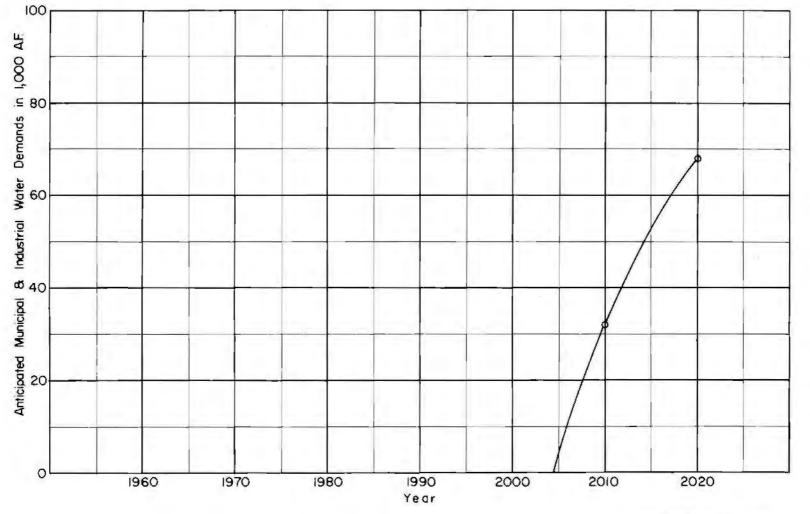
Industrial water requirements increase at a rapid rate and account for about 60 percent of the total increase for the 1960 to 2020 period. Requirements tabulated above include total water intake needs and do not allow for reuse. It appears reasonable to assume a 50 percent return flow from increased nonindustrial use which could be used to meet industrial requirements not necessarily requiring high quality water. The table on the following page illustrates the use of return flow and derives the additional water supply required to meet increased demands during the 1960 to 2020 period after allowing for return flow.

(Unit1,000 acre-feet)						
	1960	1980	2000	2020		
Nonindustrial requirement	41	74	111	151		
Industrial requirement	15	48	106	174		
Increased nonindustrial return flow		16	34	54		
Remaining industrial requirement	15	32	72	120		
Less 1960 supply	15	15	15	15		
Remaining industrial requirement		17	57	105		
2/3 remaining industrial requirement		12	38	70		
Increased water requirement (Monindus-			_			
trial plus previous line)	1/42	86	149	221		
Annual net use per capita (acft.)	0.23	0.28	0.34	0.39		
1/ Includes 1,000 acre-feet public	supplied	industr	ial water			

Water requirements after allowing for estimated usable return flow (Unit--1.000 acre-feet)

The relatively high water requirements per capita in the four-county area reflect a projected industrial expansion which is higher than other counties.

The table below illustrates the adequacy of potential water supplies in meeting future requirements. Revisions will be considered as additional data become available.


	1960	1970	1980	1990	2000	2010	2020
New water requirements		18	- 44	75	107	143	179
Weber Basin supply1/		14	38	38	38	38	38
Local development		4	5	5	5	5	5
Bear River project			1	32	64	68	68
Remaining demand						32	68

1/ Prior to 1960 about 22,000 acre-feet of Weber Basin project municipal and industrial water had been sold.

It appears the potential Bear River project would adequately supplement existing supplies to about the year 2000. In addition, irrigation conversion during the interim period and subsequent to 2000 would extend local supplies considerably. The total anticipated ultimate phase requirement for this area is illustrated on the following page.

Duchesne and Uintah Counties

The Uinta Basin, including Duchesne and Uintah Counties, has great potential for future growth because of the natural resources located in the area. Probably the greatest potential lies in the undeveloped oil shale deposits and the phosphate beds which cover large areas of Uintah County and extend into Duchesne County. Other potential growth is dependent on additional development of oil fields, timber industry, agriculture, recreation, and tourism.

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION CENTRAL UTAH PROJECT ULTIMATE PHASE-UTAH

MUNICIPAL & INDUSTRIAL WATER DEMANDS DAVIS, WEBER, MORGAN, & SUMMIT COUNTIES

MAY 10, 1965

149

289-418-21

Based on the abundance of natural resources and other factors which influence growth and development, the population projection for Uintah County indicates it will experience the greatest percentage increase in population of any county within the Central Utah project area. The growth of Duchesne County is expected to be significantly below that of Uintah County.

Future growth and development in Uinta Basin are dependent on the availability of an adequate water supply to sustain growth. The water resources within the area, consisting of stream runoff and ground water, are currently being utilized for irrigation and municipal and industrial purposes. Additional local development is anticipated only in certain areas and will probably be undertaken as an integral part of the Central Utah project. The flows of Ashley Creek have been largely controlled and utilized by the recently completed Vernal unit of the Central Utah project. Other streams in the area are essentially utilized but will be developed further by constructing regulation storage under the Central Utah project. The Vernal unit of Central Utah project makes 1,600 acre-feet of water available for municipal and industrial purposes to the area around Vernal. Much of this water has already been used to supply current needs, and if the predicted growth of the area becomes a reality, the present municipal and industrial water supplies will become inadequate in a few years.

Future additional municipal and industrial water supplies appear to depend on acquiring irrigation water rights or obtaining water from the Central Utah project.

Population and water requirement data for 1960 and projections for 1980, 2000, and 2020 were included in the University of Utah study and are tabulated below.

water requiremen	t data (fi	gures roun	ded)	
		Үеа	.r	
	1960	1980	2000	2020
Population	18,800	24,000	63,000	82,000
Nonindustrial water requirement	-	-	-	
(1,000 acft.)	7.9	10.6	30.9	40.7
Industrial water requirement				
(1,000 acft.)	3.9	8.7	41.5	56.6
Total water requirement				
(1,000 acft.)	11.8	19.3	72.4	97+3

Duchesne and Uintah Counties population and water requirement data (figures rounded)

In addition to water requirements developed in the mentioned study, Bureau of Reclamation economists have estimated water requirements for industrial growth not adequately covered under the base projection. Estimated additional water requirements for Uinta Basin are listed by decade on the following page.

	industrial developm	ent in Uinta Basin								
(Unit1,000 acre-feet)										
Year	Oil shale	Phosphate	Total							
1960	0	1	1							
1970	20	2	22							
1980	30	3	33							
1990	30	Ц.	34							
2000	40	7	47							
2010	40	11	51							
2020	40	17	57							
2030	50	26	76							
2040	50	40	90							
2050	60	62	122							

Additional water requirements for specific
industrial development in Uinta Basin
(Unit - 1, 000, acre-feet)

The industrial development in Uinta Basin will likely be located considerable distance from existing municipalities and thus cannot rely on municipal return flows. It is estimated, however, about 20 percent of the industrial water could be reused. The tabulation below shows municipal and industrial water requirements after making allowance for reuse.

Total municipal and industrial water requirement for Uinta Basin after allowing for estimated usable return flows (Figures rounded) (Unit--1.000 acre-feet)

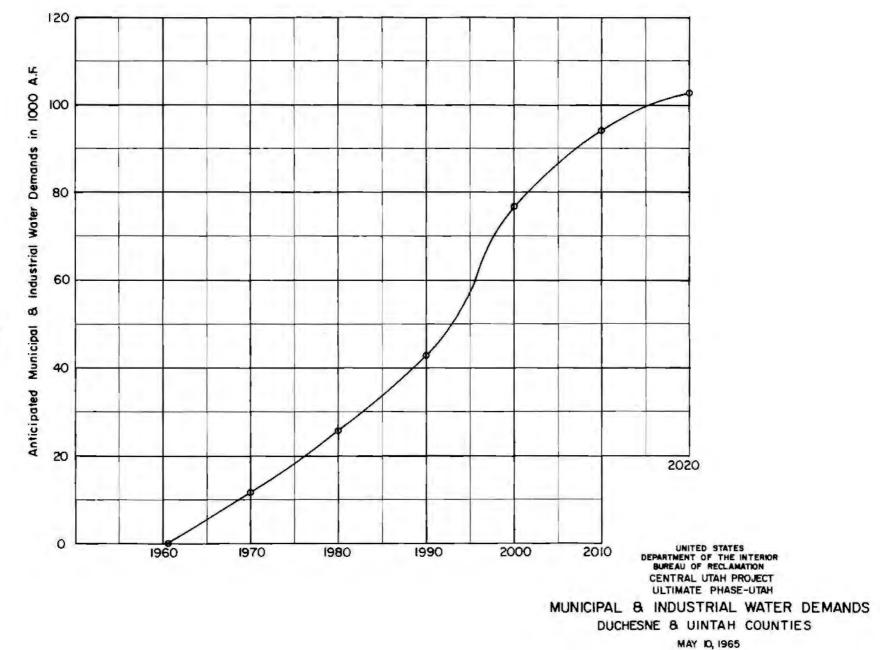
Year						
1960	1970	1980	1990	2000	2010	2020
- 8	9	11	19	31	37	-41
4	6	9	24	42	50	57
1	22	33	34	47	51	57
13	37	53	77	120	138	155
1	5	6	12	18	20	27
12	32	47	65	102	118	128
	1960 8 4 1 13 1	$ \begin{array}{r} 1960 \\ 1970 \\ 8 \\ 9 \\ 4 \\ 6 \\ 1 \\ 22 \\ 13 \\ 37 \\ 1 \\ 5 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Present supplies were adequate to serve the 1960 requirements. Increased requirements beyond 1960 would rely on the Vernal unit supply and additional local development. The tabulation indicates the need for additional water supply by 1970 and points to the need for early construction of Jensen unit and ultimate phase to serve the area.

for Duchesne and Uintah Counties							
(Unit1	,000 a	cre-fe	et)			
	1960	1970	1980	1990	2000	2010	2020
Municipal and industrial							
requirement	12	32	47	65	102	118	128
Present supply	12	32 12	12	12	12	12	12
Local development and							
conversion		2	3	4	5	6	7
Vernal unit		2	2	2	2	2	2
Jensen unit and ultimate							
phase		16	30	47	81	98	107

Estimated municipal and industrial water requirements

It is currently estimated Jensen unit would develop about 4,000 acre-feet for municipal and industrial purposes; however, this could likely be increased if deemed necessary.


The curve on the following page illustrates the anticipated municpal and industrial requirement for the Uinta Basin area.

Carbon and Emery Counties

Future increases in municipal and industrial water requirements within Carbon and Emery Counties are principally dependent on expansion of coal mining and allied industries. The area contains vast deposits of good quality bituminous coal which is currently used in the steel industry, steam-electric generation, and for other purposes.

Expanded coal development will depend on a number of factors but one of the most important will be the availability of water. The water supply in the area is utilized to the extent that municipal and industrial users have periodically purchased stock in irrigation companies to obtain additional water.

Potential water development on the Price River and tributaries is discussed in a Bureau of Reclamation report, "Price and San Pitch River Basins, Utah," December 1954. The report points out the possibility of developing additional water on the lower Price River, part of which could be exchanged upstream to Scofield Reservoir. The development would include constructing storage at the Farnham site and possibly at the Woodside site to increase the annual water supply by about 40,000 acre-feet. The quality of water is questionable at the Farnham site and definitely is not suitable for municipal, irrigation, or most industrial uses at the Woodside site. In addition, the Woodside site is several miles from existing mines and industrial development. It was concluded in the report that some water could likely be developed at the Farnham site or other upstream sites but substantial increases in water supply will depend on importations into the basin. Possible sources of importation are the Green River and Strawberry Reservoir.

.

153

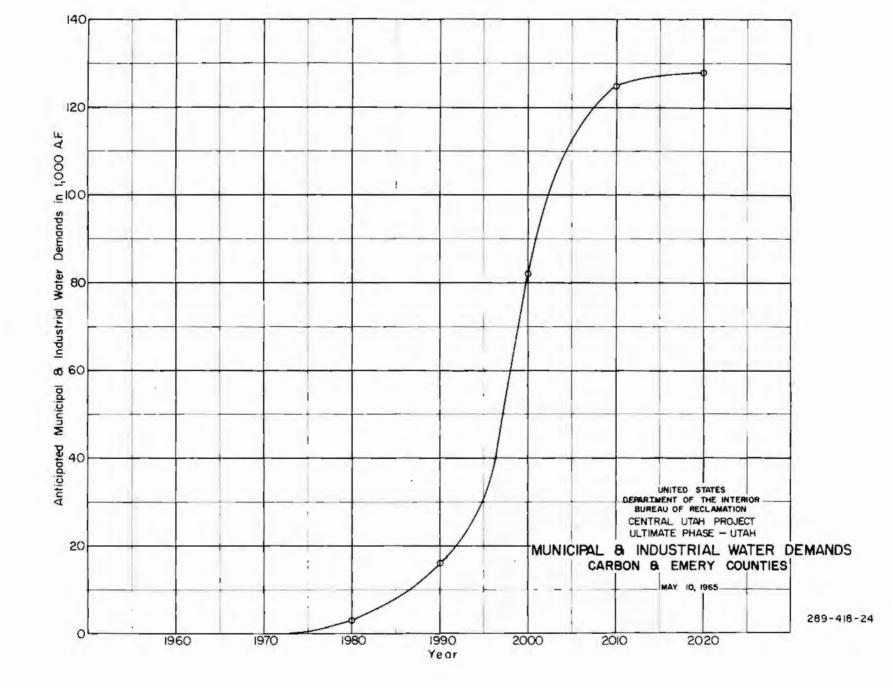
289-418-23

MUNICIPAL AND INDUSTRIAL WATER

Population and water requirement data for 1960 and future projections from the University of Utah study are tabulated below for the two counties.

Carbon and Enery Counties Population and water requirement data (Figures rounded)						
Year						
	1960	1980	2000	2010		
Population	26,700	36,700	60,200	69,000		
Water requirements (1,000 acft.)			-			
Nonindustrial	6.4	9.6	16.3	19. ^k		
Industrial	10.7	23.2	55.6	19.4 64.9		
Total	17.1	32.8	71.9	84.3		

Bureau of Reclamation economists have estimated additional water requirements for expansion not adequately covered in the University study. Estimated additional requirements are listed below by decade.


	(Unit1,000 acre-feet)
	Additional
	industrial
Year	requirement
1990	
2000	60.0
2010	105.0
2020	105.0

The industrial development will likely be located a considerable distance from municipalities and may be widely scattered, thus it is estimated only about 20 percent reuse could be realized.

The tabulation below derives the requirements which will likely depend on water developed by Central Utah project after allowing for estimated local development and reuse.

				(1	Unit1,	000 acre	-feet)
	1960	1970	1980	1990	2000	2010	2020
Total requirements	17	23	33	49	132	185	189
Present supply	17	17	17	17	17	17	17
Local development		5	10	10	10	10	10
Reuse		1	3	6	23	33	34
Central Utah project			3	16	82	125	128

Carbon and Emery Counties' anticipated municipal and industrial requirement from the ultimate phase is illustrated by the curve on the following page.

Sevier River Basin and Juab County

The counties comprising Sevier River Basin include Beaver, Garfield, Millard, Piute, Sanpete, and Sevier Counties. Juab County is included in this analysis because it is adjacent to the area and would likely be served water from the same conveyance system under Central Utah project.

Projected growth in Sevier River Basin and Juab County is primarily centered around agriculture but includes anticipated increases in light industries. Water resources in the area are essentially utilized at present for agricultural purposes. Increased municipal and industrial water supplies appear to depend on irrigation conversion or the importation of water under the Central Utah project.

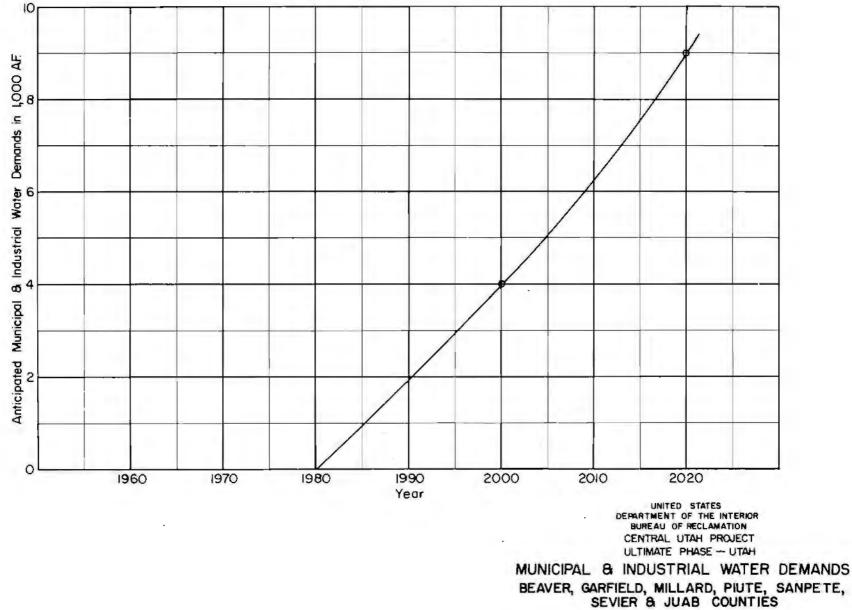
Population and water requirement data for 1960 and future projections from the University of Utah study are tabulated below for Sevier River Basin and Juab County.

Population and water requirements (Figures rounded)							
	Year						
	1960	1980	2000	2020			
Population	43,400	49,800	57,900	65,200			
Water requirement	-		•				
(1,000 acft.)							
Nonindustrial	15.9	18.3	21.3	24.1			
Industrial	4.1	9+3	13.7	17.3			
Total	20.0	27.6	35.0	41.4			

Usable return flow would be a comparatively small amount, due to the scattered nature of communities. It would likely be used for irrigation but additional municipal and industrial water could possible be diverted by exchange. Usable return flow is estimated to reduce demands on the project by about 20 percent.

It was assumed present water supplies and reserves would adequately serve the area until 1980, and only 80 percent of the increased demand beyond 1980 would require project water. Tabulated below are the estimated requirements which may depend on Central Utah project.

Potential	Central Utah project demand
(Unit	1,000 acre-feet)
Year	Demand
1980	
1990	2
2000	24
2010	7
2020	2


The municipal and industrial requirement for this area from the ultimate phase is illustrated by the curve on the following page.

Tooele and Wasatch Counties

Population and water requirement data for Tooele and Wasatch Counties compiled by the University of Utah have been tabulated below. The potential demand on ultimate phase for Tooele County will require additional investigation because of the distance involved in serving the area.

(Figure:	s rounded)		
		Ye	ar	
	1960	1980	2000	2020
Population				
Tooele County	17,900	29,100	37,100	43,400
Wasatch County	5,300	7,000	9,100	11,100
Water requirements (1,000 acft.)	•••			·
Tocele County				
Nonindustrial	3.9	7.1	9.4	11.5
Industrial	6.1	12.7	20.0	26.0
Total	10.0	19.8	29.4	37.5
Wasatch County		-	-	
Nonindustrial	1.7	2.3	3.0	3.6
Industrial	1.7	2.8	2,8	2.8
Total	3.4	5.1	5.8	6.4

Population and water requirement data (Figures rounded)

MAY 10, 1965

h-h 01

289-418-22

POWER

Introduction

Numerous potential hydroelectric and pumping developments may be associated with Central Utah project ultimate phase plans for developing and delivering water for irrigation, municipal, and industrial uses. Representative potential developments now recognized are summarized and described briefly in this chapter.

Power Requirements

Electric utilities in the United States have experienced a rate of growth such that they must plan and construct, on the average, one facility equal in size to the one in place every ten years. Rapid growth of this magnitude has been experienced in Utah and in the power market area of the Colorado River Storage project, comprising the States of Utah, Wyoming, Colorado, New Mexico, and southern Nevada. Federal Power Commission estimates of power requirements to be supplied by utilities in these areas are tabulated below to illustrate the continued rapid growth which may be expected.

		Power requirements							
	Peak deman	nd (megawatts)		equirements kwhrs.)					
		CRSP		CRSP					
Year	Utah	market area	Utah	market area					
1955	507	2,515	2,637	13,518					
1960	789	3,904	4,151	21,303					
1970	1,445	7,258	7,710	39,966					
1980	2,247	11,477	12,084	63,148					

It is evident that large new sources of power generation must be planned and developed if the rapid growth forecast is to be met. Consideration should be given to various alternative sources of energy and sites for generation facilities.

There are large-scale resources of coal and oil shale in the Upper Colorado River Basin including areas of eastern Utah in the Central Utah project area. These resources are favorable to development of large minemouth fuel-electric powerplants. Some sites for mine-mouth plants are now being studied in connection with extra high voltage transmission to powerloads in California. In addition, the technology for nuclear-powered

plants is advancing and forecasts have been made that this source of power will be competitive by 1970.

The bulk of the electrical power growth requirements will probably be met by large thermoelectric developments. These plants, however, operate best and most efficiently in a high plant factor base load operation. Hydroelectric plants are particularly adaptable to peaking operation since adjustments in generation can readily be made to meet load changes. A combination of thermoelectric and hydroelectric generation may most effectively and efficiently meet future anticipated load requirements. As loads increase in magnitude, pumped storage developments may be needed, involving pumping water to storage during off-peak hours of power use for release to generate power at the time of system peaks.

Potential hydroelectric resources in the project area should be investigated as a means of supplying part of the large amounts of power generation which will be required in future decades, as well as supplying power for project pumping plants. Particular consideration should be given to the utilization of hydroelectric resources for peaking operation.

Potential Hydroelectric Development

Potential hydroelectric developments are described under the general plan of water development with which they are associated or incidental to. Many of these developments are alternative to each other.

Comprehensive plan of 1951 authorizing report

This plan would divert south slope streams of the Uinta Range into a 90-mile-long Strawberry aqueduct at about 8,000 feet elevation. About 400,000 acre-feet would be diverted annually. The water would flow by gravity to the potential Strawberry Reservoir for storage. Releases from the reservoir would pass through Diamond Fork enroute to distribution in the Bonneville Basin. Water diverted from the Uinta Basin would be replaced and additional supplies developed by constructing the Flaming Gorge aqueduct for direct diversion from Flaming Gorge Reservoir to the Uinta Basin.

Diamond Fork Power System

The largest potential hydroclectric development associated with the authorizing report plan of 1951 is in the Diamond Fork area. The Diamond Fork power system as then presented included the following potential powerplants.

		Installed (k		gener	annual ration kwhrs.)
Powerplant	Nominal head (ft.)	Initial phase	Compre- hensive planl/	Initial phase	Compre- hensive planl/
Old West Fifth Water	329 303	9,000	9,000 30,000	46.6	46.6 120.3
Hammock Tanner Castilla	1,460 224 400	40,000 6,000 6,000	160,000 26,000 6,000	240.2 35.9 48.3	789.7 120.8 48.3
Total	2/2,400	61,000	231,000	310.0	1,125.7

1/ Includes initial phase plan.

 $\overline{2}$ / Using average of Old West and Fifth Water heads.

The total average annual generation in excess of one billion kilowatt-hours representative of the potential of the Diamond Fork development with the water supply of the comprehensive plan of the 1951 report. The system, as indicated, would operate at an average annual plant factor of 55 percent. By utilizing daily regulating reservoirs and different conduit routings and powerplant sites in the same general area, peaking capacity could be added. Such changes were made in the initial phase plan adopted in the "Bonneville Unit Definite Plan Report," August 1964. It is expected that similar changes will be made in ultimate phase plans.

Potential ultimate phase powerplant sites in the Diamond Fork area are located at the outlet works of the potential Hayes and Monks Hollow dams.

Hayes Powerplant.--The Hayes Reservoir is planned for construction in the initial phase. A powerplant of 4,000-kilowatt capacity in the ultimate phase would produce about 14,000,000 kilowatt-hours annually with initial phase water distribution. The potential Hayes Powerplant supplants the Castilla Powerplant of earlier studies.

Monks Hollow Powerplant. -- A peaking plant of 90,000 kilowatts and producing an average of 142,000,000 kilowatt-hours annually has been considered in past studies. The potential Monks Hollow Reservoir is not included in the initial phase plan.

Uinta Basin Powerplants

The comprehensive plan of development of the 1951 authorizing report included the Yellowstone and Whiterocks Powerplants. There are several other possible sites on tributary streams above the potential ultimate phase Strawberry aqueduct.

Yellowstone Powerplant. -- This plant would be located at the outlet works of the potential Upper Yellowstone Dam on the Strawberry aqueduct. The plant would utilize the head developed by the dam and the flows of Strawberry aqueduct from Little Brush Creek to Yellowstone Creek. Reconnaissance studies indicated that a plant of 11,000-kilowatt capacity would produce 40,000,000 kilowatt-hours.

Whiterocks Powerplant.--Located on the Whiterocks River at the diversion to the potential Strawberry aqueduct, this plant would develop a head of about 500 feet and an annual water supply of about 70,000 acrefeet. Freliminary studies showed that a plant of 7,000 kilowatts would produce 30,000,000 kilowatt-hours annually.

Other potential south slope Uinta powerplants.--Several other possible power sites are located at the diversions of Green River and Duchesne River tributaries to the potential Strawberry aqueduct. Preliminary estimates of these powerplants are summarized in the following tabulation.

	Head	Average annual water supply	Capacity	Average annual energy production (million
Powerplant	(ft.)	(acft.)	(kw.)	kwhrs.)
Ashley	800	40,000	6,000	25
Dry Fork	2,000	22,000	8,000	34
Uinta	500	100,000	12,000	42
Upper Yellowstonel/	800	35,000	5,000	20
Lake Forkl/	600	65,000	7,000	30
Rock Creek1/	1,100	25,000	5,000	20

1/ Located in National Forest Wilderness area.

Green River Powerplants

Some alternative plans of water development involve direct diversion of water from the Green River. Large diversion dams compatible with power development would be required. Development of hydroelectric sites to provide power for extensive project pumping developments may also be economical. Several power sites have been recognized in past studies, including Echo Park, Split Mountain, and Gray Canyon. It should be noted that the Echo Park and Split Mountain sites are within the boundaries of the Dinosaur National Monument. Public Law 485, the authorizing act for the Colorado River Storage project and participating projects, states: "It is the intention of Congress that no dam or reservoir constructed under the authorization of the act shall be within any mational park or monument."

Echo Park

Echo Park Dam site is located on the Green River about 3 miles east of the Utah-Colorado state line and about 3 miles downstream from the

confluence of the Yampa and Green rivers. Echo Park Powerplant would be located at the toe of the dam with an installed capacity of 200,000 kilowatts. Initially it would produce about 995,000,000 kilowatt-hours annually and with ultimate upstream depletions about 677,000,000 kilowatt-hours.

Split Mountain

Split Mountain Dam site is located on the Green River about 14 air miles east of Vernal, and the powerplant would be situated about 12 river miles downstream from the dam. With a capacity of 100,000 kilowatts the plant would produce about 710,000,000 kilowatt-hours annually under initial conditions and about 441,000,000 kilowatt-hours with ultimate upstream depletions.

Tay Canyon

Gray Canyon Dam would be located on the Green River about 4 miles upstream from the mouth of the Price River. Gray Canyon powerplant at the toe of the dam would have a capacity of 210,000 kilowatts. The plant would produce about 1,303,000,000 kilowatt-hours annually with initial conditions and 826,000,000 kilowatt-hours with ultimate upstream depletions.

An alternative to Gray Canyon Dam located downstream from the confluence of the Price and Green Rivers would have about the same power potential.

Other potential powerplants

The potential hydroelectric developments discussed in the preceding paragraphs are representative of the possibilities in the project area. Other alternative plans of water development, however, may include additional potential sites.

Alternatives involving diversion of water from Strawberry Reservoir to drainages other than Diamond Fork, including Tie Fork to Sanpete and Juab, Price River, or Daniels Creek to Provo River, may be considered. Potential power sites with the water supply involved and differences in elevation would be associated with such plans. In earlier studies planners have considered powerplant sites at Milburn and Nephi associated with one such plan.

Other powerplant possibilities could be associated with water distribution plans involving canal drops or regulating reservoirs. In early studies plants of this type were considered at Leamington and Sevier Bridge Reservoirs.

POWER

Pumped Storage Development

Numerous potential pumped storage sites are in the project area. The most favorable of these are considered to be in the Wasatch Front area due to proximity to powerloads. Development of large-scale minemouth fuel-electric plants in central and eastern Utah and construction of high voltage interregional transmission lines, however, may make potential developments of peaking power in other project areas attractive.

Development of peaking capacity with use of project water supply. as in the Diamond Fork area, is also a potentiality, possibly in combination with pumped storage. Other sites would probably have to be of the pure pumped storage class with self-contained water supply requiring only small amounts for makeup of losses and plant use.

Some pumped storage sites in the project area are described in the "Pumped Storage Investigations Preliminary Reconnaissance report," Region 4, March 1964.

Project Pumping

Cursory investigations indicate that project powerplants in the Central Utah project area would produce power in excess of the project pumping requirements. Extensive use of pumping is a potentiality in the various alternative plans of water development. Pumping plants now recognized are described briefly in the following paragraphs.

Comprehensive plan of 1951 authorizing report

Potential pumping plants included as part of the comprehensive plan of the 1951 report are the Blue Bench, Whiterocks-Neola, Altonah, Leota, and Holden plants. The Blue Bench plant would be located about 5 miles southwest of Upalco, Utah, and would pump water from the Flaming Gorge aqueduct to the Blue Bench during summer months for new land irrigation. The Whiterocks-Neola pumping plant would be located approximately $2\frac{1}{2}$ miles east of Whiterocks, Utah, and would pump water from the Flaming Gorge aqueduct to the Whiterocks-Neola Canal for irrigation. The Altonah pumping plant would pump replacement irrigation water from the Whiterocks-Neola Pump Canal about 9 miles southeast of Altonah, Utah, to lands above Mt. Emmons and Bluebell. The Leota pumping plant would be located north of the Leota Bottoms area, a flood plain of the Green River near Leota. Water would be pumped from the river via the service canal to lands too high to be reached by gravity flow from the river. The Bureau of Sport Fisheries and Wildlife is currently constructing a migratory bird refuge on lands that would be served by this plant which may preclude further development at this site. The Holden pumping plant, located about 7 miles

CHAPTER VII

northwest of Holden, Utah, would pump water from the Sevier Canal for irrigation of new lands in the vicinity of Holden and Fillmore. Details of the pumping plants follow.

	Blue	Whiterocks	5 -		
Pumping plant	Bench	Neola	Altonah	Leota	Holden
Static lift (ft.)	414	558	1.67	20	255
Hydraulic capacity (c.f.s.)	293	275	120	35	240
Annual quantity pumped (acft.)	40,500	32,300	13,100	5,300	38,000
Installed capacity (kw)	16,000	23,000	2,800	115	9,000
Annual energy consumption (mflion kwhrs.)	45	30	5.6	0.2	15.7

Direct diversion from Green River plans

Several alternative plans of water development involving direct diversion of water from the Green River and export to the Bonneville Basin are potentialities. These could involve diversion from the Flaming Gorge Reservoir, the potential Echo Park or Gray Canyon Reservoir, or others. Extensive pumping could be associated with such developments.

The plants would operate near capacity a large part of the year. Pertinent data of these plants are given as follows to indicate somewhat the magnitude of pumping which may be required with the various potential plans of direct diversion from the Green River to the Bonneville Basin.

	·····	Power requ	irements	
	Average bead	Hydraulic capacity	Capacity	Annual energy (million
Pumping plant	(ft.)	(c.f.s)	(kw)	kwbrs.)
Echo Park	133	1,800	31,100	190
Duchesne	286	1,800	61,600	406
Starvation No. 1	375	1,500	71,500	533
Starvation No. 2	410	1,500	65,000	583
Total	1,204		229,300	1,712

The same alternative plan, with greater scale of development than the 1951 comprehensive plan, would also include several pumping plants associated with water distribution in the Bonneville Basin. Data on these plants are shown in the following tabulation.

			Power req	uirements
Pumping plant	Average head (ft.)	Amount pumped annually (acft.)	Capacity (kw.)	Annual energy (million kwhrs.)
Sage Valley	200	21,300	2,500	5.5
Mona	306.5	42,860	24,300	16.8
Fayette No. 1	203.5	65,445	7,800	17.1
Fayette No. 2	61	14,220	500	1.1
Sevier Bridge	173	13,950	1,680	3.1
Holden-Fillmore No. 1	202	20,040	2,360	5.2
Holden-Fillmore No. 2	203	87,400	10,400	22.7
Holden-Fillmore No. 3	210	18,520	2,380	5.0
Total			51,920	76.5

The pumping plants listed above are somewhat representative of those possible with large-scale diversion from other points along the Green River for conveyance to the Bonneville Basin.

Unit pumping developments

Some potential pumping plants are located in the project area which could be developed as physically independent units separate from the large-scale development alternatives. Some of these which have been noted are described below.

Woodside Pumping Plant

With a dam on the Green River below the mouth of the Price River, water could be backed up nearly to Woodside at about elevation 4,600. Water could be pumped from such a reservoir to supply added water for municipal and industrial or supplemental irrigation use in the Price area or to supply new irrigation water to lands around Woodside. Pump lifts up to 1,300 feet, probably best served in a series of two or more lifts, would be involved. A plan developing 100,000 acre-feet would require about 20,000 kilowatts and 120,000,000 kilowatt-hours to supply the pump or pumps.

Pariette Pumping Plant

With direct diversion from the Green River near Ouray at about elevation 4,650 and a pump lift up to 150 feet, about 50,000 acre-feet of water could be pumped for new land irrigation in the Pariette Draw. This would require pumping plants with a total capacity of about 3,000 kilowatts and consuming about 7,000,000 kilowatt-hours annually.

CHAPTER VII

POWER

Wonsits Pumping Plant

This plant would be located on the Green River about 10 river miles upstream from Ouray. Assuming a series of two or more lifts up to a total of 150 feet and pumping 100,000 acre-feet annually, about 6,000 kilowatts of pumping capacity using about 14,000,000 kilowatt-hours annually would be required. Some of the lands to be served are in the Hill Creek extension of the Uintah and Ouray Indian Reservation, and some are in the bird refuge being constructed by the Bureau of Sport Fisheries and Wildlife.

Ground Water Pumping Plants

Ground water resources will be studied and some pumping developments may be included as part of the project plan. Sufficient data are not available at present to detail such possible development.

Effect on Existing Powerplants

Existing hydroelectric powerplants in the project area which could be affected adversely or favorably by ultimate phase developments are tabulated below.

		Installed capacity	Approx. annual generation (million
Powerplant	Owner	(kw.)	kwhrs.)
Yellowstone hydro	Moon Lake Electric Assoc.	900	6.5
Uintah hydro	Uintah Power and Light	1,200	9.0
Deer Creek	U.S. Bureau of Reclamation	4,950	27.0
Spanish Fork	Strawberry Water Users' Assoc.	1,450	10.5

Additional Data Required

Additional data required for the plan formulation studies involving potential hydroelectric and pumping plants include the following.

(1) Water supply operation studies to delineate the quantities available for hydroelectric generation or to be pumped at each potential site.

(2) Topographic maps equal to USGS 7.5' quadrangle series (1' = 2,000 ft. and 40-ft. contours) for some of the areas in the project not now available. As attractiveness of plans is indicated by reconnaissance studies, more detailed mapping will be required.

POWER

(3) Up-to-date estimates of the value of power in the project area, including peaking capacity as a function of plant factor.

(4) Current information on power market and selling rates.

(5) Up-to-date reconnaissance estimating data for construction costs of pumping plants, powerplants, switchyards and substations, transmission lines, tunnels, pipelines, penstocks, etc. This is particularly important in comparing alternative features such as pumping vs. gravity plans.

(6) Production and cost data on the powerplants which may be affected by the project.

CHAPTER VIII

AGRICULTURAL ECONOMY

Introduction

The economy of the area that may be served irrigation water from the ultimate phase of the Central Utah project is, with few exceptions, dependent upon agriculture. Although the type of agriculture practiced varies from place to place, particularly between high elevation counties with short growing seasons and lower elevation counties with longer growing seasons, the need for more water and better water regulation is a common denominator for all counties involved. To properly analyze the agricultural economy of the project area, it was necessary to obtain certain basic data on the factors influencing present agricultural conditions.

Climatological data

Weather data were obtained from Federal Government and State publications. Throughout all counties considered there are four distinct and well defined seasons with little overlapping. The data obtained and presented in the table on the following page indicate the elevation, the average annual precipitation, the average frost-free period, and the plant development units characteristic of each weather reporting station.

Farm types

Farm types utilizing a livestock enterprise as the major source of income dominate the project area. The number of farms by percent in each farm type as determined by the 1959 agricultural census for each county is shown in the table on page 171. It is not anticipated that significant changes in farm types will result from project construction.

Crop distribution

Hay crops and pasture are the principal crops grown with each area adjusting to its particular needs. Small grains are grown principally as a nurse crop in establishing alfalfa and pasture stands. Row crops are limited to areas with longer growing seasons and better water supplies. It is anticipated that row crops will become increasingly important in counties with climatical conditions suitable for their production when an adequate and regulated water supply is available. Crop distribution for each county is shown by percent in the table on page 172. Data for this table were taken from the 1959 agricultural census.

	C	entral Utah	Project	-	-		
		······			Frost-		Plant
			Prec	ipitation	free	Growing	develop-
	Location of	Eleva-	<u></u> .	April-	period	season	ment,/
County	weather station	tion	Annuel	September	$(32^{\circ}F.)$	(28 ⁰ F.)	units ¹
Emery	Castle Dale	5,600	7.62	4.56	127	153	3,460
Beaver	Beaver	5,860	11.77	6.06	104	142	3,080
Carbon	Price Game Farm	5,580	9.24	4.82	150	178	4,530
Duchesne	Duchesne	5,515	9.07	5.24	120	164	3,350
Garfield	Panguitch	6,720	9.41	5.56	71	106	2,260
Juab	Nephi	5,133	14.80	7.00	151	201	4,400
Millard (west)	Delta	4,759	7.70	3.80	146	170	4,120
Millard (east)	Fillmore	5,250	14.04	5.63	152	176	4,880
Piute	Piute Reservoir	5,900	8.14	4.40	134	154	3,970
Sanpete	Manti-Moroni	5,555	10.31	5.83	117	145	3,630
Sevier	Richfield	5,300	8.01	4.12	115	151	4,000
Tooele	Tooele	4,820	15.48	6.64	162	-209	,5,195
Uintah	Roosevelt-Altamont	5,300	7.00	3.90	126	173	2/3,990
Utah	Mosida	4,690	9.90	4.70	145	194	4,490
Wasatch	Heber	5,593	15.38	5.66	83	105	2,540

Climatological data by counties--ultimate phase

Source: Climatological Data of Utah--Annual Summaries, U.S. Weather Bureau.

1/ "Utah Heat and Moisture Indexes for Use in Land Capability Classification," U.S.D.A., Soil Conservation Service, Salt Lake City, Utah, 1954.

2/ Fort Duchesne.

Farm type	Beaver	Carbon	Duchesne	Emery	Garfield	Juab	Millard	Piute	Sanpet
Cash grain	2					10	2		1
Other field crops	4	5			6		2	3	1
Vegetable farms									
Fruit farms									
Poultry farms	12			1		12	2	l	11
Dairy farms	24	4	26	4	4	7	7	21	18
Livestock farms	25	28	36	45	51	33	35	47	36
General farms	6	1	7	l		9	23	4	5
Miscellaneous farms	27	62	31	49	39	29	29	24	28
Total percent	100	100	100	100	100	100	100	100	100

•

Source: Agricultural census, 1959

e pha	phase - C.U.P.										
ard	Piute	Sanpete	Sevier	Tooele	Uintah	Utah	Wasatch				
2		1	1	2		1					
2	3	l	2			l					
						1					
						5					
2	l	11	2	4	l	6					
7	21	18	11	10	8	9	34				
5	47	3 6	50	28	37	21	32				
3	4	5	7		4	6	9				
9	24	28	27	56	50	50	25				
0	100	100	100	100	100	100	100				
		···· ·· <u>-</u>									

•

			Dis	tribution (Pe			-	- C.I
Beaver	Carbon	Duchesne	Emery	Garfield	Juab	Millard	_Piute	Sa
5.21	2,76	2.69	5.83	1.51	4.06	3.68	•32	
5.04	.26	.04	.05	2.29	.02	.41	3.36	
.02		.01	.26		.02	.01		
	4.90		.13		•39	، 37		2
50.70	42.66	23.55	34.81	34.89	42.19	42.44	42.38	42
								t
	.02	1.63	.12	,-	1.76	24.75	.09	
.60	.64	.32	1.96		4.60	2.80	.15	
				.99				:
			2.44	2.94				
								1
1	.10	1.02	1.77	.07	.06	.38	.04	
	•31	.07	.48	.26	•31	.03		
19.7 ⁴	32.47	56.90	43.62	43.85	26.05	9.04	31.79	2
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	10
	5.21 5.04 .02 50.70 4.98 .60 5.43 1.10 7.18	5.21 2.76 $5.04 .26$ $.02 4.90$ $50.70 42.66$ $4.98 1.41$ $.02$ $.60 .64$ $5.43 5.84$ $1.10 4.96$ $7.18 3.67$ $.10$ $.31$ $19.74 32.47$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BeaverCarbonDuchesneEmery 5.21 2.76 2.69 5.83 5.04 $.26$ $.04$ $.05$ $.02$ $.01$ $.26$ 4.90 $.13$ 50.70 42.66 23.55 34.81 4.98 1.41 9.36 4.25 $.02$ 1.63 $.12$ $.60$ $.64$ $.32$ 1.96 5.43 5.84 $.92$ 2.50 1.10 4.96 1.75 2.44 7.18 3.67 1.74 1.78 $.10$ 1.02 1.77 $.31$ $.07$ $.48$ 19.74 32.47 56.90 43.62	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Source: Agricultural census, 1959

ted	land)	••••						
rđ	Piute	Sanpete	Sevier	Tocele	Uintah	Utah	Wasatch	All counties
8 1 7	•32 3•36	1.55 .03 .07 2.68	5.32 .75 .05 5.77	1.47 .19 .05	2.93 .05 .02	6.18 .59 4.90 3.00	.05 •37	3.58 .59 .80 1.36
475	42.38 12.03 .09	42.58 8.23 .34	37.98 2.66	35.09 16.11 3.39	33.17 3.72 1.10	27.63 9.26 .78	41.41 15.15 .04	34.99 6.72 4.25
0 98 58	.15 .60 1.99 7.25 .04	1.07 2.93 2.58 10.08 4.58	.01 2.23 .67 16.30 1.68	.95 1.34 1.24 8.91 .14	.35 1.42 2.50 2.93 .17	1.72 5.42 1.91 15.39 .62	.14 .82 1.65 6.48	1.13 2.37 1.77 8.48 1.04
3		.01	.04	.09	.05	6,21	.03	1.03
4	31.79	23.27	26.54	31.03	51.59	16.39	33.86	31.89
0	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

mate phase - C.U.P.

Crop yields

Crop yields for the area were also obtained from the agricultural census and are shown by counties in the table on the following page. These yields are representative of counties as they are now and reflect the present short water supply. The increase in crop yields from project development should provide the basis for improving all phases of the agricultural economy in these counties.

Estimated Payment Capacity

The anticipated payment capacity of the water users has been determined on the basis of a full water supply and reduced to an acre-foot basis. Lands in need of only a supplemental supply will be expected to pay the same charges per acre-foot as land requiring a fully supply.

The anticipated payment capacity is based on long-term average prices received and paid by farmers. The indices are 250-265 (1910-14 = 100).

In the absence of detailed farm management data and farm budget analyses, it was necessary to arrive at payment capacities by more preliminary methods. Detailed studies have been made for the Bonneville unit which included studies in the counties of Duchesne, Wasatch, Summit, Utah, and Juab. These studies and county agricultural and weather data form the basis for payment capacity estimates of all counties included in the areas under consideration. Estimated payment capacities per acre and per acre-foot by county are shown in the table on page 175.

Irrigation benefits

Irrigation benefits are based upon increased production of goods and services associated with the increased water supply less the associated cost. Three types of tangible benefits are evaluated in monetary terms, direct, indirect, and public. Direct irrigation benefits are the increase in net farm income resulting from application of additional water. Indirect irrigation benefits result as agricultural products move through the channels of trade. These benefits are measured by profits arising from various economic activities resulting from an added increment of water. Public benefits insofar as they can be identified by monetary values are measures of improvement in the general welfare of an area not already included as direct or indirect. Items in this category would be increased tax base, settlement opportunity, and improvements in community facilities and services.

Procedure Used for Estimating Irrigation Benefits

Irrigation benefits have been estimated on the relationship of payment capacity to direct, indirect, and public benefits. This relationship

	<u> </u>	Winter	Spring				Other	Alfalfa		Sugar
	Corn	wheat	wheat	Oats	Barley	Alfalfa	hay	seed	Potatoes	beets
County	(tons)	(bu.)	(bu.)	(bu.)	(bu.)	(tons)	(tcns)	(1bs.)	(cwt.)	(tons)
Beaver	14.3	36	37	38	41	3.1	1.9		198	
Carbon	12.6	20	34	40	38	2.1	1.5	100	93	14.4
Duchesne	11.0	32	35	42	40	2.2	1.3	291	166	
Emery	10.7	27	29	33	32	2.3	1.3	142	121	14.1
Garfield	13.2	-	38	46	47	2.4	1.7		107	
Juab	15.0	31	33	49	52	2.5	1.0	164	336	10.8
Millard	16.2	33	36	48	<u>4</u> 9	2.0	1.8	264	268	12.8
Piute	10.0		4 <u>1</u>	38	57	2.3	1.3	69	135	
Sanpete	13.1	25	36	46	51	2.5	1.5	151	108	13.9
Sevier	15.2	12	54	53	65	3.5	1.5		142	14.3
Tooele	14.5	34	31	49	47	2.4	1.3	56	170	
Uintah	12.7	42	33	38	39	2.1	1.3	149	191	
Utah	16.0	40	51	60	56	3.6	1.5	198	159	19.4
Wasatch		39	46	70	68	2.8	2.0	600	114	

Average yields per acre of irrigated crops,

Estimated payment capacity per acre and per acre-foot by counties, ultimate phase--Central Utah project

<u>ur</u> cru	ace phasecentra	ar otan project	
	Estimated	Estimated	Estimated
	payment	water	payment
	capacity	requirement	capacity2/
County	(per acre)	(ac.ft.)±/	(ac.ft.)
Beaver	\$10.00	3.90	\$2.00-3.50
Carbon	8.50	4.02	1.75-3.00
Duchesne	7.50	4.00	1.50-3.00
Emery	8.00	3.92	1.75-3.00
Garfield	6.00	2.61	1.75-3.00
Juab	13.00	3.08	3.75-5.00
Millard (Delta)	11.50	2.80	3.75-5.00
Millard (Fillmore)	11.50	4.13	2.25-3.50
Piute	7.50	4.15	1.75-3.00
Sanpete	11.00	3.68	2,50-4.00
Sevier	12.00	3.81	3.00-4.50
Tooele	9.00	4.20	1.75-3.00
Uintah	7.50	3.65	1.50-3.00
Utah	14.00	3.44	3.50-5.00
Wasatch	10.00	3.60	2.50-3.75
1/ At head of can	al		· · · · · · · · · · · · · · · · ·

1/ At head of canal.
2/ Rounded to nearest \$0.25.

CHAPTER VIII

AGRICULTURAL ECONOMY

was established using the results of a detailed study of irrigation repayment and benefits for the Bonneville unit of the Central Utah project. A ratio of benefits to payment capacity per acre was tabulated for thirteen different irrigation blocks. These blocks are believed to be representative of Utah in general. The climate, land class, and farm types are assumed to be comparable to the counties under consideration. Values used to project irrigation benefits were \$8.10 of direct benefits for every dollar of payment capacity, \$6.40 of indirect benefits, and \$1 of public benefits. Benefits for each county in the ultimate phase were computed on the basis of this relationship and are shown in the table on the following page.

Additional Data Required

Detailed economic information will be required for all areas where project water may be delivered. As land classification progresses in these potential areas, farm management surveys will need to follow to obtain crop yields, land use, types of farms, livestock, plus all the other data obtained in contacts with the farmers. With this information as a basis, farm budgets will be prepared to determine irrigation payment capacity and benefits.

Gooseberry project (Sanpete County)

Preliminary studies have been made in the past in regard to the Gooseberry project in Sanpete County. A study was included in a 1953 report and also in a 1957 report. The comparative results of these two studies with emphasis on the economic aspects are summarized in the tables on pages 178 and 179.

Since these studies have been made, irrigation benefits have been reappraised (Garrison formula) throughout the Bureau. The basic information contained in the studies such as climate, crop yields, and farm sizes and types, however, has been considered in projecting payment capacity and benefits for Sampete County.

Municipal and Industrial Water Benefits

At present, benefits are being measured for municipal and industrial water throughout the Bureau of Reclamation as the cost of the alternative single-purpose municipal and industrial project. Most everyone agrees that this procedure is not a true measure of the economic benefits of water for this purpose. Municipal and industrial water has a higher use than irrigation and as such should produce greater benefits; however, with the above method of determining benefits it does not always result in such a relationship. Based primarily upon the benefits determined for the

		×	efits by count	×	Estimated water	
	Estimated				require-	Estimated
	payment	Estima	ted benefits p	er acre	ment acre-	direct
(a wet a	capacity	Divect	Indirect	Motol	feet per scre <u>l</u> /	benefits per
County	per acre	Direct	and public	Total		acre-foot
Beaver	\$10.00	\$80.00	\$74.00	\$154.00	3.90	\$19.00-24.00
Carbon	8.50	69.00	62.00	131.00	4.02	15.00-20.00
Duchesne	7.50	61.00	55.00	116.00	4.00	14.00 -1 9.00
Emery	8.00	65.00	59.00	124.00	3.92	14.00-19.00
Garfield	6.00	49.00	44.00	93.00	2.61	16.00-21.00
Juab	13.00	105.00	96.00	201.00	3.08	32.00-37.00
Millard (Delta)	11.50	80.00	50.00	130.00	2.80	25.00-30.00
Millard (Fillmore)	11.50	93.00	85.00	178.00	4.13	20.00-25.00
Piute	7.50	60.00	48.00	108,00	4.15	15.00-20.00
Sanpete	11.00	89.00	81.00	170.00	3.68	22.00-27.00
Sevier	12.00	95.00	85.00	180.00	3.81	22.00-27.00
Tooele	9.00	73.00	67.00	140.00	4.20	15.00-20.00
Uintah	7.50	61.00	55.00	116.00	3.65	14.00-19.00
Utah	14.00	113.00	104.00	217.00	3.44	30.00-35.00
Wasatch	10.00	81.00	74.00	155.00	3.60	20.00-25.00

1/ At head of canal.

.

	1953	1957
Item	report	report
Benefits		
Irrigation - Direct	\$135,300	\$69,600
Indirect	72,800	21,300
Public		8,600
Recreation	6,100	4,800
Forest resources	2,700	
Fish and wildlife	-2,000	
Total	214,900	104,300
Costs		
Construction costs	5,189,000	2,088,000
Interest during construction	162,000	50,000
Interest after construction	553,000	
Less past investigations	1/	-85,000
Less present worth of salvage value	-114,000	
Net project investment	5,790,000	2,053,000
Average annual equivalent		
Project investment#	158,000	56,100
Annual operation and maintenance cost		
(irrigation)	10,300	5,600
Annual operation and maintenance cost	-	-
(recreation costs)		700
Annual replacement costs (recreation)		1,700
Colorado River storage costs	29,400	2,700
Total	197,800	66,800
Benefit-cost ratio	1.09 to 1.00	1.56 to 1.00

1/ 22 percent for 100 years - factor 0.0273118.

CHAPTER VIII

AGRICULTURAL ECONOMY

	Gooseberry project	
Item	1953 report	1957 report
Irrigable area (acres)	16,400	3,630
Price level	1939-44	250/265
Kinds of farm budgets	Livestock and gen. 1 crop 100%	Livestock (wt. 70%) Grade A dairy (wt. 30%)
Size of farm	Livestock and gen. crop 70 ac. irrigated	Livestock 150 ac. irri. Grade A dairy 100 ac. irrig.
Net farm income	Livestock and gen. crop w/ \$1,440livestock and gen. crop w/o \$855	Livestock w/ \$7,225 Livestock w/o 4,757 Grade A w/ 8,568 Grade A w/o 5,259
Payment capacity per acre	Livestock and gen.crop w/ \$2.39livestock and gen. crop w/o \$0.50	Livestock w/ \$6.11 Livestock w/o 1.50 Grade A w/ 23.15 Grade A w/o 4.75
Recommended annual re- payment total	\$22,300	\$18,000
Per acft. (rounded) Direct irrigation bene- fits per acre	1,60 1,8.25	2.75 1/19.17
Indirect irrigation	1/4.44	<u>1</u> /5.87
benefits per acre Public irrig. ben. per acre		1/2.37
Total irrig, ben. per acft.	1/14.86	1/15.31
Net project investment	\$5,790,000	\$2,053, 00 0
Total annual benefits	\$197,800	\$104,300
Benefit-cost ratio	1.09/1.00	1.56/1.00

Comparative economic data

1/ Adjusted for development.

initial phase of the Central Utah project, the municipal and industrial benefits are estimated to be \$60 per acre-foot, further limited in plan formulation to \$40 for a combination of repayment and alternative costs in the Bonneville Basin. In the Uinta Basin the limit for repayment and alternative costs is estimated at \$30.

CHAPTER IX

POTENTIAL DEVELOPMENTS

General

This chapter has been prepared to briefly outline the general project objectives and describe some of the possibilities that may be considered in project plan formulation. One of the major considerations in developing the objectives is the size of the project and the relationships of the available water resources to the land and the people.

The potential project area occupies parts of 19 counties in central Utah. The lands are separated by the Wasatch range into two major drainage basins, the Bonneville Basin and the Upper Colorado River Basin. A preliminary estimate of the potential arable and irrigated lands tabulated for this report shows a total of 1,194,000 acres in 26 separate areas. About 865,000 acres, or over 72 percent of the total land area, are located in the Bonneville Basin. The 1960 census shows a total of 786,083 people in the 19 counties included in the project with 740,641, or 94 percent of the total population, residing in the Bonneville Basin. An estimated 2,500,000 acre-feet of streamflow is available for use within the project area, with less than 1,000,000 acre-feet or about 40 percent available in the Bonneville Basin to serve over 72 percent of the project land and over 94 percent of the total population.

A primary objective of the ultimate phase of the Central Utah project is to collect the available water and distribute it more uniformly to areas of need in an effort to develop and beneficially utilize to the economic limit the following: (1) Utah's apportioned share of the Upper Colorado River water, (2) the surface water supplies of the Bonneville Basin streams within the area, and (3) ground water supplies in the project area. Maximum use of Colorado River water would require serving the needs within the Upper Colorado River Basin and then conveying the excess water to areas of need in the Bonneville Basin.

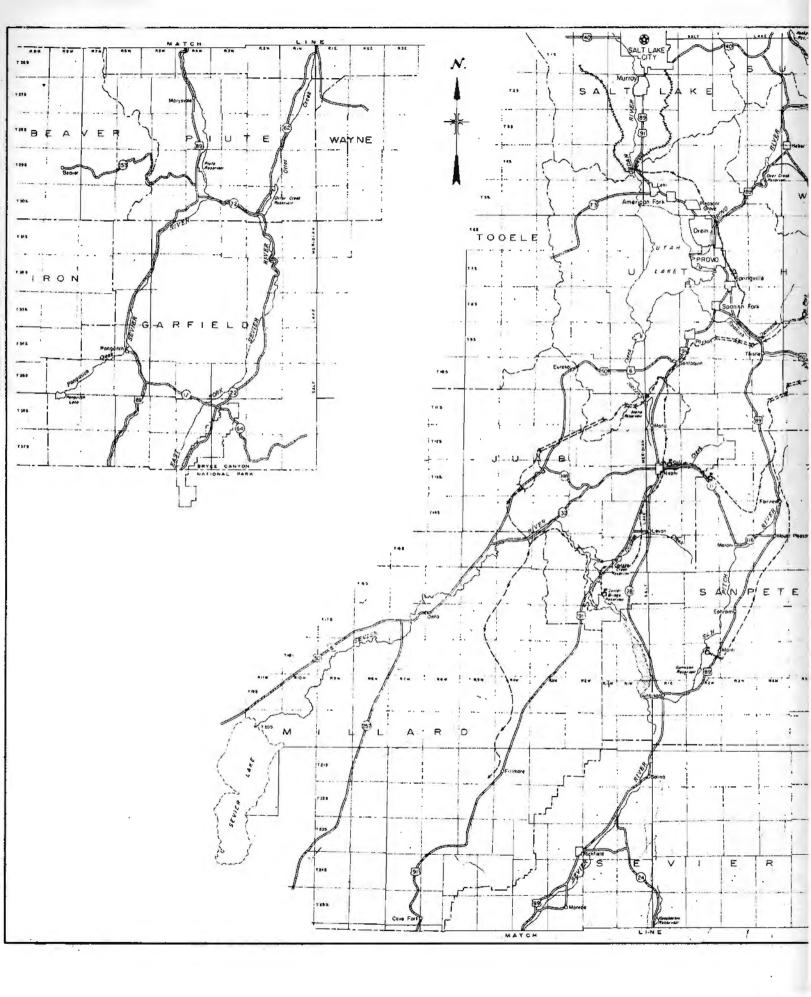
Water requirements of the Upper Colorado River Basin portion of the project could be supplied from the following sources: control of local streams, diversions from Flaming Gorge Reservoir, and pumping directly from Green River. Sources of additional water supply to Bonneville Basin include: further control of local streams, transbasin diversion from the Upper Colorado River Basin, and development of ground water. Transbasin diversions could be accomplished by intercepting tributaries at a high elevation and conveying the water to the Bonneville Basin by gravity or by pumping from Green River to elevations high enough to divert through the Wasatch range. Some potential developments of each basin indicated on the map on the following page are discussed below.

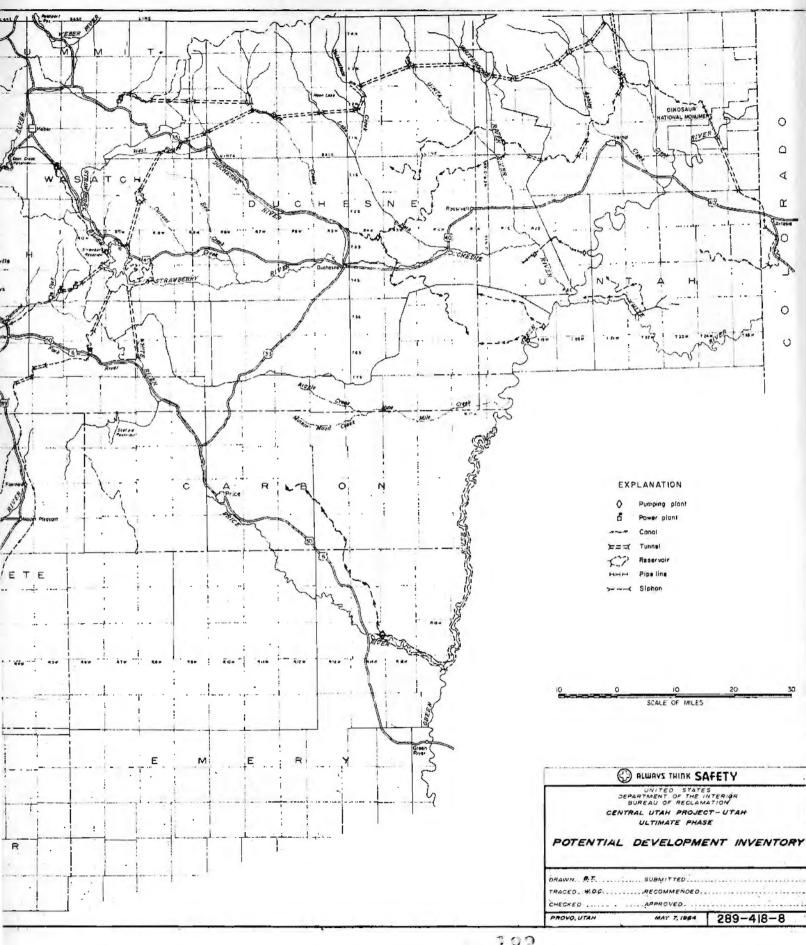
Upper Colorado River Basin

Uinta Basin

Strawberry Reservoir is by far the most inexpensive storage known in the Uinta Basin and under ultimate development would be enlarged for longterm carryover storage for water that would be diverted from the Uinta Basin to the Bonneville Basin. An aqueduct extending eastward from Strawberry Reservoir would intercept flows of as many streams along the south flank of the Uinta Mountains as is economically feasible. Diversion dams and some reservoirs for seasonal regulation will be required on the intercepted streams. A tunnel and aqueduct would divert water from Flaming Gorge Reservoir that would be used to replace exported supplies and add to the existing supplies in the area from Brush Creek to Duchesne River. This would be supplemented wherever feasible by pumping directly from Green River.

Obtaining the maximum utilization of water resources will require close coordination and balance among the various water sources and collection and distribution facilities.


Possibilities in the Uinta Basin would include serving Leland and Pariette Bench areas from Flaming Gorge aqueduct or by pumping directly from Green River. The Deadman Bench area of the potential Juniper project could also be served from Flaming Gorge aqueduct as an alternative to service from Juniper Reservoir.


Price River Basin

Future requirements of the Price River Basin could be met by diversions from Strawberry Reservoir or by pumping directly from Green River. The pumping alternative would reserve some additional water in Strawberry Reservoir for transbasin diversion to Bonneville Basin.

Bonneville Basin

Several possible service areas exist in the Bonneville Basin. Since the quantity of water available for transbasin import is limited, extensive studies will be required in the selection of the most feasible areas of use to receive project water. Municipal and industrial requirements are increasing rapidly and could consume a large share of the available project water. The most economical use of the total water supply will

CHAPTER IX

require close correlation between local surface and ground water supplies and transbasin imports. Long and costly aqueducts and canals, together with terminal storage or peaking reservoirs, will be required to accomplish the distribution of imported water.

Because of the limited water supply, priority of service will go to the presently irrigated areas with insufficient water supplies. Thus, it is anticipated that much of the available project irrigation water may be needed in Sevier and San Pitch Basins. Several alternative routes from Strawberry Reservoir to these areas of service are available and need to be explored. One route is to follow the Bonneville Unit Wasatch aqueduct route down Spanish Fork Canyon then on to the terminal storage at Dyer Reservoir site or some alternative storage site on the lower Sevier River. A second route would be to tunnel south from Strawberry Reservoir and extend an aqueduct to the upper San Pitch River thence down Salt Creek to Nephi and on to the lower Sevier River. A third route would be to continue the second route from the upper San Pitch River on to the lower Sevier River via Gunnison.

Studies will be required to determine the extent to which imported water delivered to the lower Sevier River could replace present supplies which could then be used upstream on the Sevier River. Ground water availability and use are presently being studied and will need to be correlated with the use of imported water.

Population growth and industrial expansion have an important influence on future water requirements of any area. The population and related industrial developments are expanding rapidly in the Bonneville Basin area, especially north of Payson. The number of people in Salt Lake and Utah Counties increased 82 percent from 1940-60. This rate of growth is more than three times that of the Nation as a whole and is expected to continue at a relatively high rate. Therefore, it is anticipated that the municipal and industrial water demand will far exceed the local supplies available. Since project water will be limited to Utah's share of the Colorado River water, the municipal and industrial allocation may be increased and the irrigation water decreased correspondingly.

Determining the extent of the municipal and industrial demand and correlating the local sources of supply with imported supplies will require extensive study. Various methods exist of serving project water to areas of need and will be considered. Part of the water can be exchanged through delivery to Utah Lake and withholding Provo River flows as in the Bonneville unit plan. The remaining quantity available through this means is limited, however. Additional supplies can be delivered directly to Provo River from Strawberry aqueduct or Strawberry Reservoir. From there, delivery could be made to Weber and Davis Counties (Ogden) by exchange on Weber River or diversion to Salt Lake and Utah Counties directly. An alternative for delivery

CHAPTER IX

of these additional supplies is via an aqueduct from Hayes Reservoir along the foot of the mountains to Provo River.

Fish and wildlife, recreation, flood control, water quality control, and area redevelopment requirements will be given proper consideration in the formulation of project plans in both basins.

CHAPTER X

FUTURE INVESTIGATIONS

Detailed investigation of the ultimate phase of the Central Utah project has only recently begun. Cursory studies were made for inclusion in the 1951 Central Utah project report and have not been expanded to the present time. This inventory report is concerned primarily with the compilation and presentation of existing data that will assist with future studies rather than a discussion of recent findings.

Extensive investigations of the project will be required to facilitate the formulation of an adequate plan prior to the preparation of a feasibility report. A preliminary appraisal report is scheduled for completion in FY 1966, and a feasibility report is due in FY 1967 for the Uintah unit portion of the ultimate phase. Several years will be required to complete the investigations necessary for these reports and for the selection of the optimum plan of development. Every available plan will be investigated thoroughly.

The limiting factor in plan formulation will be the amount of water available for project use. Utah's proportionate share of the Upper Colorado River water constitutes the major part of the project water supply. Detailed studies will be required to determine the water supply that will be available for project development.

The land inventory of this report shows considerable potential acreage in need of irrigation water. In fact, the land in the project area requiring irrigation is far in excess of the available water. If the requirement for municipal and industrial water continues at the present accelerated rate, by the time project water becomes available practically all of the water supply may be used for that purpose, leaving but little for irrigation use.

Municipal and industrial water requirements will depend primarily upon future population increases and industrial expansion. Several studies have been made recently of population projections with related water requirements and no doubt other similar studies will be made in the future. Extensive investigations will be necessary to determine the future municipal and industrial water requirements of the project area.

A project as large as the ultimate phase will require many features for the collection, storage, and distribution of project water. Detailed surveys will be required of these features for designs and cost estimates. Detailed land classification and drainage surveys will be necessary of all land areas considered for a project water supply. Other required investigations include continued ground water studies to determine to what extent

CHAPTER X

ground water would be available to supplement the surface water supply, financial analyses to determine the feasibility of the project, and a thorough study of the existing water rights.

Close coordination should be maintained between the initial phase and the ultimate phase of the Central Utah project. The project plan should be flexible so as to incorporate any new or refined data as it becomes available through continued investigations.

A cooperative program with Federal, State, and local agencies that has been initiated should be encouraged to include the findings of their investigations in the plan formulation and to provide information for their reports.