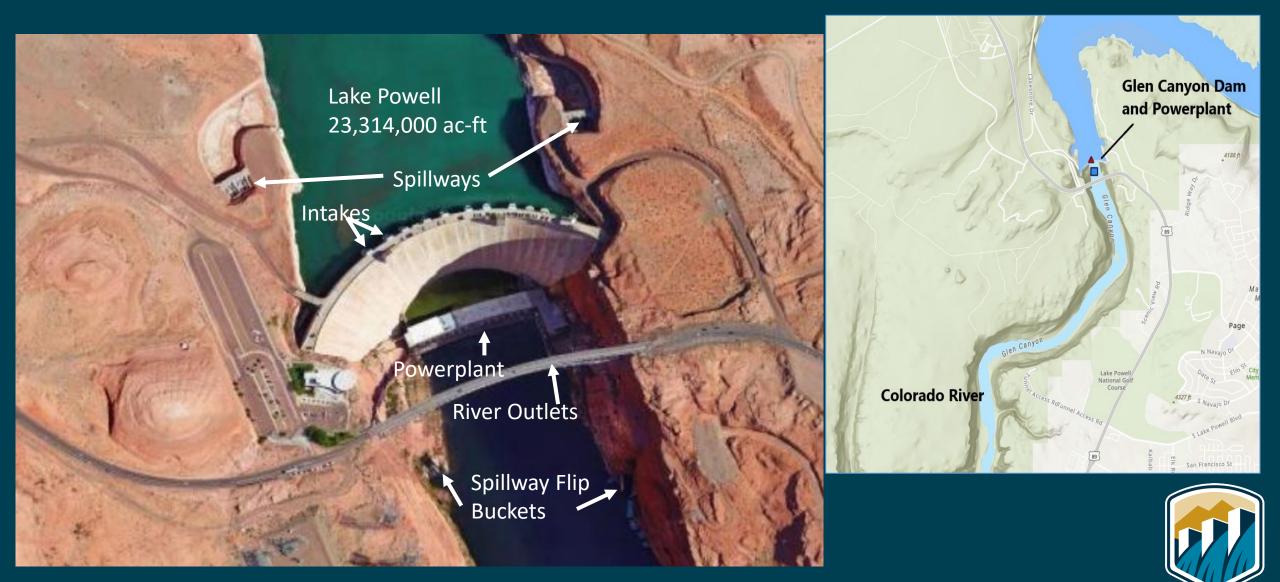
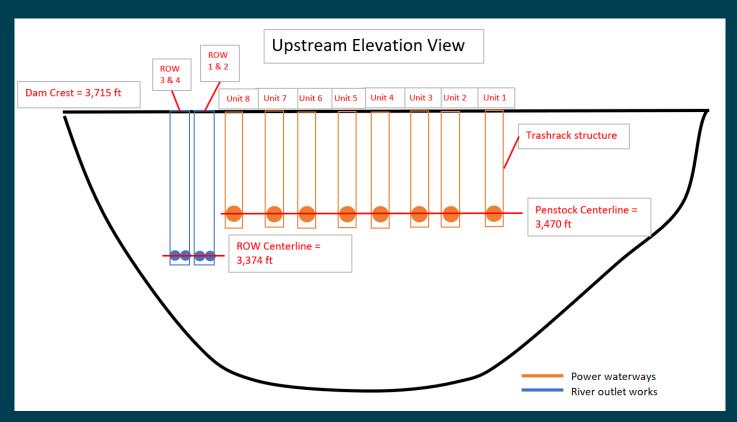
BUREAU OF RECLAMATION

Glen Canyon Dam Low-Head Hydropower Modifications

CENERAL CHILDE

Summary

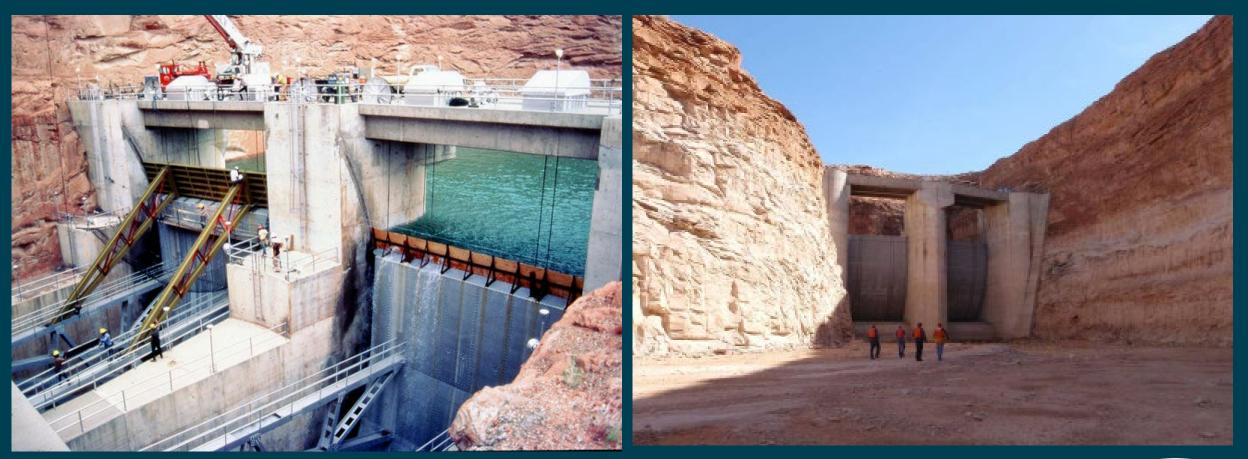

- Background
- Purpose and Needs
- Alternatives
- Next Steps



Background: Glen Canyon Dam and Powerplant

Background: Glen Canyon Dam

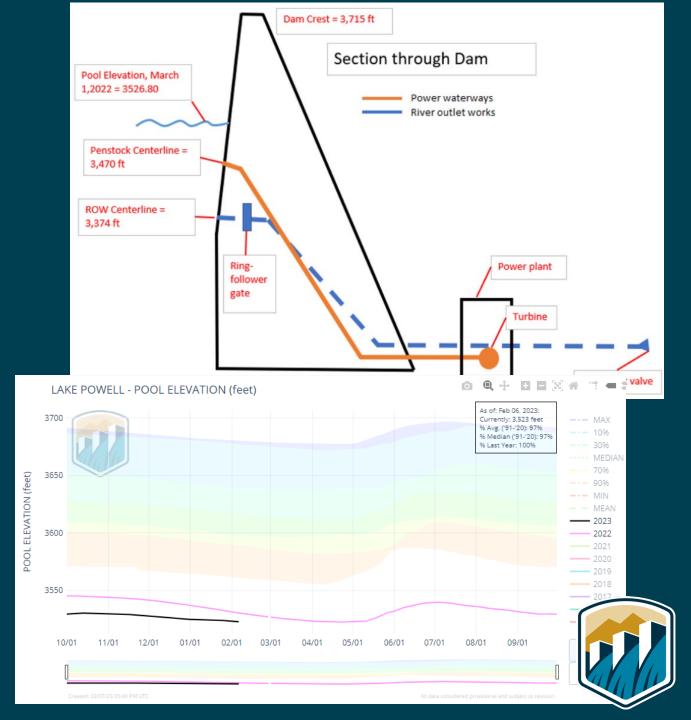
- ROW centerline = 3,374'
 - 30' above designer's estimated 100-year silt level
- Penstock centerline = 3,470'
 45' above designer's estimated 150-year silt level
- Current silt level of forebay is ~3,200'



Background: Value Analysis

- <u>Reclamation's Value Program</u>
- Systematic process of reviewing and analyzing the requirements and functions of...
 - Facilities
 - Projects
 - Systems
 - Etc.
- Value planning study
 - conducted at the conceptual stage
 - considers various alternatives to meet the identified needs
 - Alternative(s) selected for further analysis/study

Background: Glen Canyon Dam – Then vs Now


Background: P.L. 117-43

- Extending Government Funding and Delivering Emergency Assistance Act
- <u>Reclamation</u> received \$200 million for Addressing Drought in the West
 - Glen Canyon Bypass and Intake Generation Appraisal Studies due to drought conditions \$2 million

Purpose and Needs

- Develop alternatives to address concerns with power generation and water releases at Glen Canyon Dam and Powerplant.
- Power revenue from Glen Canyon funds Reclamation and WAPA programs.
- Annual releases are determined by Interim Guidelines, and per the Law of the River.
- The Minimum Power Pool (MPP) is set based on the existing penstock elevations.
- Ongoing western drought is decreasing the water pool elevation, and increasing the risk of dropping below the MPP.
- The current pool elevation of Lake Powell (3522.85) is more than 177 feet below full and 32 ft above MPP.

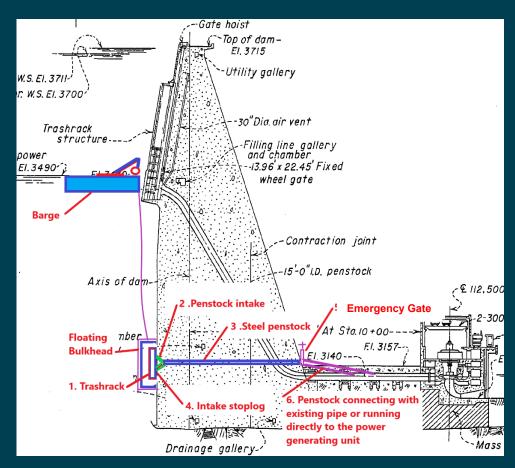
Alternatives

- 1. New intakes through Glen Canyon Dam
 - a) Low-Level Power Intake with New Low Head Runners
 - b) Mid-Level Power Intake with Existing Runners
- 2. Outlet Works Powerplant
 - a) New Powerplant, 2 Units
 - b) Existing Powerplant connection
- 3. Abutment Powerplant
 - a) Left Abutment Underground Powerplant
 - b) Right Abutment In-River Powerplant
- 4. Adjust Colorado River Basin Operations
- 5. Refine MPP Operating Limit
- 6. Invest in Solar or Wind Generation

Alternatives discussed but not further considered

Remove river diversion tunnel plug(s)

- Downstream sections incorporated into spillway tunnels
- Inlets buried in sediment (41-ft diameter tunnels)
 - Right invert (bottom) elevation 3,137.37 feet
 - Left invert (bottom) elevation 3,170.67 feet
- Sediment could damage tunnel lining, penstocks, wicket gates, turbine runners
- Modify 2007 interim guidelines
 - Independent effort, already underway
- Re-operate upstream reservoirs
 - Insufficient storage capacity, only a temporary reprieve
- Low level outlet works
 - No power generation, can be incorporated into other alternatives



Alternative 1a: Low-Level Power Intake - New Low Head Runners

Description:

Penetrate through the dam, intake located in current dead pool, connect to existing penstocks downstream of the dam. Use existing power generating units with installation of new low-head runners.

- New intake @ 3285 ft (or other elevation)
- Up to 185 ft additional operating range
- Requires at least 4 units
- New guard gate and trash rack required
- Increased risk from penetration through dam

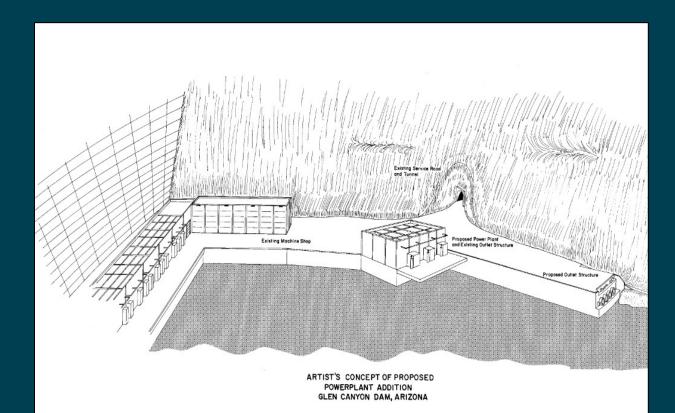


Alternative 1b: Mid-Level Power Intake - Existing Runners

Description:

- (4) new Mid-Level intakes
- Connects to existing penstocks
- Extended Gate/Trashrack

- Uses existing turbine runners and power plant
- Operation of power plant limited to elev. 3445
- New guard gate and trash rack required
- Increased risk from penetration through dam

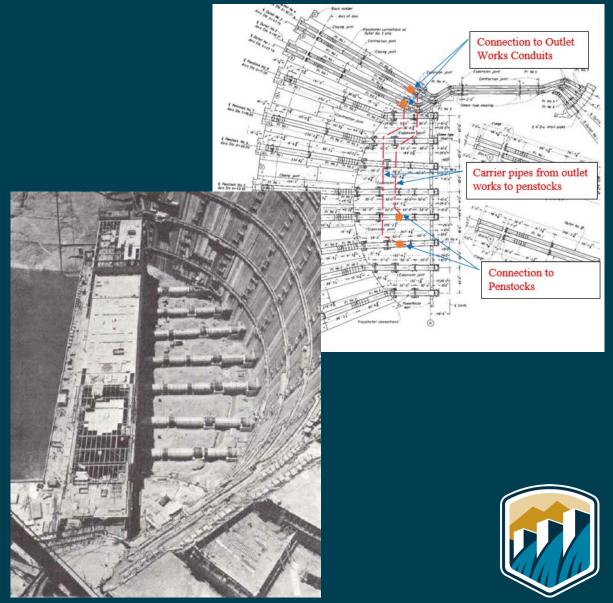


Alternative 2a: Bypass Powerplant (New) – Outlet Works

Description:

- Artist's rendering with PP sited at left abutment, near Machine Shop & river OW.
- Four conduits provide flow to new units with two conduits providing flow to each unit.
- Extend river OW downstream.

- Releases either through power plant or ROW only, not both
- High velocity = large friction loss
- Deep excavation (~100 ft) for substructure
- Low level release provides operational flexibility



Alternative 2b: Powerplant (Existing) – Outlet Works

Description:

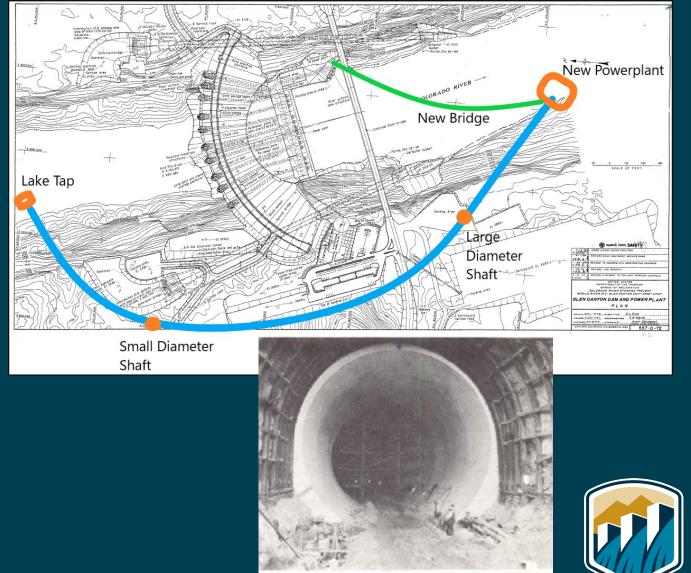
- Use the existing infrastructure (as much as possible)
- Connect 2 of the ROW conduits to existing penstocks


- Requires bypass operation in addition to power plant releases to meet 2007 IG release volumes
- High head loss requires low-head runners
- Limited space for construction

Alternative 3a: Left Abutment Underground Powerplant Description:

- Tunnel through left abutment
- Underground power plant

- Penstock and power plant size can be designed to maximize water/power
- Rock mechanics, seepage control, construction underground, maintenance, cost
- Low level release provides operational flexibility
- Increased capacity for HFEs



Alternative 3b: Right Abutment Powerplant

Description:

- Tunnel through right abutment
- Power plant in river bed

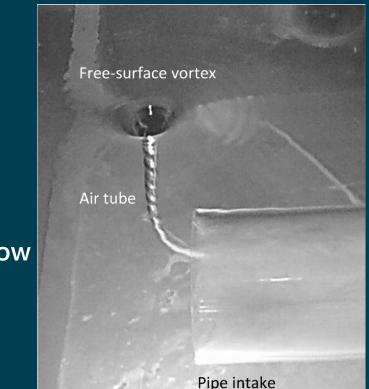
- Penstock and power plant size can be designed to maximize water/power
- Rock mechanics, construction in river, maintenance, cost
- Low level release provides operational flexibility
- Increased capacity for HFEs

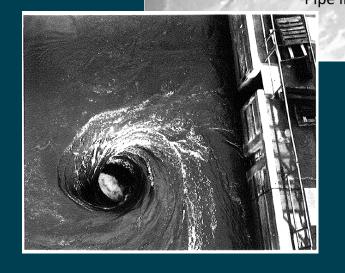
Alternative 4: Adjust Colorado Basin Operations

Description:

Adjust operations on a system-wide basis (Glen Canyon and Hoover) to maximize power generation under low flow conditions using existing infrastructure.

- Potentially addressed by ongoing SEIS and post-2026 guidelines efforts
- Lower infrastructure investment
- Does not address lost revenue if no generation below MPP




Alternative 5: Refine MPP Operating Limit

Description:

- MPP probably due to vortex formation as intake submergence is reduced
- Modeling to simulate flows at reservoir levels approaching and below the MPP
- Potential addition of vortex-suppressing structures

- Limited operational benefit, not greater than elev. 3477.5
- No structural modifications
- Modeling efforts are underway
- Low cost

Alternative 6: Invest in Solar or Wind Generation

Description:

• Invest in other renewable energy sources to augment hydro power resources

- Scalable
- Requires large land areas
- Authority CRSP only authorizes hydropower
- Expertise this is not Reclamation's expertise
- Can be developed independent of Reclamation
 - Customers exploring options

Power Generation and Flow

Operations At or Below Reservoir Elevation of 3,490 ft (MPP)

		Operating Range (Min Elevation)		Operating Range (Max Elevation)					
<u>Alternative</u>	Intake elevation (ft)	<u>Elevation (ft)</u>	<u>Total Max</u> flow (cfs)	<u>Approx.</u> Total Max <u>Power</u> <u>Output</u> (MW)	Elevation (ft)	<u>Total Max</u> flow (cfs)	<u>Approx. Total</u> <u>Max Power</u> <u>Output (MW)</u>	<u>Number</u> of Units	Outlet works can <u>be used to</u> <u>supplement</u> flow as needed
1a (Low-level intake, low-head runner)	3,285	3,390	8,400	135	3,490	10,800	240	4	Yes, to 3390
1b (Mid-level intake)	3,425	3,445	10,000	210	3,490	12,000	310	4	Yes
2a (Powerplant at outlet works)	3,390	3,390	4,000	65	3,490	15,000	340	2	No
2b (Low Head Runner)	3,374	3,390	2,000	60	3,490	7,500	170	2	Yes
3a (Left Abutment Powerplant)	3,370	3,390	9,200	160	3,490	14,000	350	2	Yes
3b (Right Abutment Powerplant)	3,370	3,390	9,200	160	3,490	14,000	350	2	Yes
4 (Adjust Colorado River Basin Operations)							0	Yes
5 (Refine MPP Operations)								0	Yes
6 (Invest in Solar and Wind)							200	0	Yes

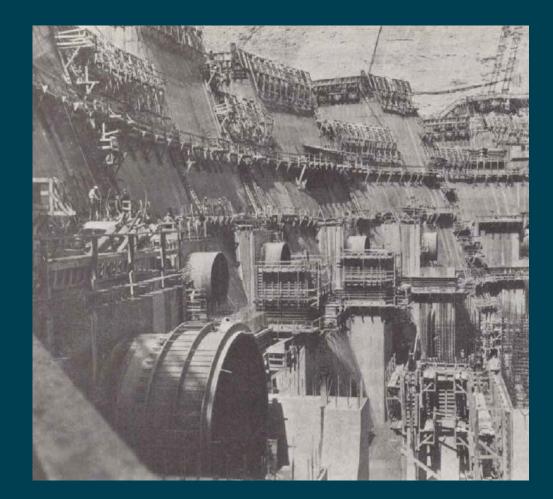
GCD Maximum Flows

Alternative	Maximum flow, >3,490	Maximum flow, <3,490	Power Plant flow, >3,490	Power Plant flow, <3,490
Current	~45,000 cfs	15,000 cfs	~30,000 cfs	0 cfs
Alt. 1a (low level intake)	~45,000 cfs	27,000 cfs	~30,000 cfs	12,000 cfs
Alt 1b (mid-level intake)	~45,000 cfs	27,000 cfs	~30,000 cfs	12,000 cfs
Alt 2a (bypass power plant)	~45,000 cfs	15,000 cfs	~45,000 cfs	15,000 cfs
Alt 2b (ROW to existing PP)	~45,000 cfs	15,000 cfs	~30,000 cfs	7,500 cfs
Alt 3a & b (abutment PPs)	~59,000 cfs	29,000 cfs	~44,000 cfs	14,000 cfs

Non-power generation considerations

Alternative	Power intake elevation	Augment normal release w/colder water	Increased maximum discharge	Flexibility for water quality (dissolved oxygen or other)
Current	3,470	No	No	No
Alt. 1a (low level intake)	3,285 (or per design)	Yes	No	Yes
Alt 1b (mid-level intake)	3,425	Yes	No	Yes
Alt 2a (bypass power plant)	3,374	Yes	No (>powerplant max discharge)	Yes
Alt 2b (ROW to existing PP)	3,374	Yes	No (>powerplant max discharge)	Yes
Alt 3a & b (abutment PPs)	3,370 (or per design)	Yes	Yes	Yes

Other considerations


- Authority
- Costs: capital, life cycle and O&M
- Construction time-line
- Repayment
- Environmental opportunities & impacts
 - Temperature
 - Capacity for HFEs
 - Dissolved oxygen & other water quality considerations

Next Steps

Where do we go from here?

- Partner and stakeholder briefings
- Select alternative(s) (spring 2023)
- Appraisal Study (Reclamation TSC)
 - Schedule: 2023-2024
 - \$2M from 2022 CR drought funding
 - Stakeholder participation and input

Next Steps

Authority and funding would be required to proceed beyond appraisal

- Planning continued...
 - Feasibility Study
 - NEPA
- Design
- Construction
- Operation

Nick Williams UCB Region Power Manager (801) 524-3745 nwilliams@usbr.gov

— BUREAU OF — RECLAMATION